Loading…
Quantum Pieri rules for isotropic Grassmannians
We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology...
Saved in:
Published in: | Inventiones mathematicae 2009-11, Vol.178 (2), p.345-405 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-009-0201-y |