Loading…

Materials with internal variables and relaxation to conservation laws

.The theory of materials with internal state variables of Coleman & Gurtin [CG] provides a natural framework to investigate the structure of relaxation approximations of conservation laws from the viewpoint of continuum thermomechanics. After reviewing the requirements imposed on constitutive th...

Full description

Saved in:
Bibliographic Details
Published in:Archive for rational mechanics and analysis 1999-05, Vol.146 (2), p.129-155
Main Author: TZAVARAS, A. E
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-1cfdd26f05124f25db02559e12b76cc0422ef8c2c2a981abb00a0a5d4d51ccc03
cites
container_end_page 155
container_issue 2
container_start_page 129
container_title Archive for rational mechanics and analysis
container_volume 146
creator TZAVARAS, A. E
description .The theory of materials with internal state variables of Coleman & Gurtin [CG] provides a natural framework to investigate the structure of relaxation approximations of conservation laws from the viewpoint of continuum thermomechanics. After reviewing the requirements imposed on constitutive theories by the principle of consistency with the Clausius-Duhem inequality, we pursue two specific theories pertaining to stress relaxation and relaxation of internal energy. They each lead to a relaxation framework for the theory of thermoelastic non-conductors of heat, equipped with globally defined "entropy" functions for the associated relaxation process. Next, we consider a semilinear model problem of stress relaxation. We discuss uniform stability and compactness for solutions of the relaxation system in the zero-relaxation limit, and establish convergence to the system of isothermal elastodynamics by using compensated compactness. Finally, we prove a strong dissipation estimate for the relaxation approximations proposed in Jin & Xin [JX] when the limit system is equipped with a strictly convex entropy.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s002050050139
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881401755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418796671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1cfdd26f05124f25db02559e12b76cc0422ef8c2c2a981abb00a0a5d4d51ccc03</originalsourceid><addsrcrecordid>eNpVkNFLwzAQxoMoOKePvgfxtXq5JE37KGNOYeKLPpdrmmBHbWfSbfrfm7GBCAfHd_e7j-Nj7FrAnQAw9xEAQUMqIcsTNhFKYga5kadsAgAyKzWac3YR42ovUeYTNn-h0YWWush37fjB2z7Jnjq-pTStOxc59Q0PrqNvGtuh5-PA7dBHF7YH3dEuXrIznyzc1bFP2fvj_G32lC1fF8-zh2VmsRRjJqxvGsw9aIHKo25qQK1LJ7A2ubWgEJ0vLFqkshBU1wAEpBvVaGHTXk7ZzcF3HYavjYtjtRo2-3djVRRCgTBaJyg7QDYMMQbnq3VoPyn8VAKqfVDVv6ASf3s0pWip84F628a_o0IpYwr5C_U1Z6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881401755</pqid></control><display><type>article</type><title>Materials with internal variables and relaxation to conservation laws</title><source>Springer Nature</source><creator>TZAVARAS, A. E</creator><creatorcontrib>TZAVARAS, A. E</creatorcontrib><description>.The theory of materials with internal state variables of Coleman &amp; Gurtin [CG] provides a natural framework to investigate the structure of relaxation approximations of conservation laws from the viewpoint of continuum thermomechanics. After reviewing the requirements imposed on constitutive theories by the principle of consistency with the Clausius-Duhem inequality, we pursue two specific theories pertaining to stress relaxation and relaxation of internal energy. They each lead to a relaxation framework for the theory of thermoelastic non-conductors of heat, equipped with globally defined "entropy" functions for the associated relaxation process. Next, we consider a semilinear model problem of stress relaxation. We discuss uniform stability and compactness for solutions of the relaxation system in the zero-relaxation limit, and establish convergence to the system of isothermal elastodynamics by using compensated compactness. Finally, we prove a strong dissipation estimate for the relaxation approximations proposed in Jin &amp; Xin [JX] when the limit system is equipped with a strictly convex entropy.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050050139</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Studies ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Archive for rational mechanics and analysis, 1999-05, Vol.146 (2), p.129-155</ispartof><rights>1999 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1cfdd26f05124f25db02559e12b76cc0422ef8c2c2a981abb00a0a5d4d51ccc03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1844778$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TZAVARAS, A. E</creatorcontrib><title>Materials with internal variables and relaxation to conservation laws</title><title>Archive for rational mechanics and analysis</title><description>.The theory of materials with internal state variables of Coleman &amp; Gurtin [CG] provides a natural framework to investigate the structure of relaxation approximations of conservation laws from the viewpoint of continuum thermomechanics. After reviewing the requirements imposed on constitutive theories by the principle of consistency with the Clausius-Duhem inequality, we pursue two specific theories pertaining to stress relaxation and relaxation of internal energy. They each lead to a relaxation framework for the theory of thermoelastic non-conductors of heat, equipped with globally defined "entropy" functions for the associated relaxation process. Next, we consider a semilinear model problem of stress relaxation. We discuss uniform stability and compactness for solutions of the relaxation system in the zero-relaxation limit, and establish convergence to the system of isothermal elastodynamics by using compensated compactness. Finally, we prove a strong dissipation estimate for the relaxation approximations proposed in Jin &amp; Xin [JX] when the limit system is equipped with a strictly convex entropy.[PUBLICATION ABSTRACT]</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Studies</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpVkNFLwzAQxoMoOKePvgfxtXq5JE37KGNOYeKLPpdrmmBHbWfSbfrfm7GBCAfHd_e7j-Nj7FrAnQAw9xEAQUMqIcsTNhFKYga5kadsAgAyKzWac3YR42ovUeYTNn-h0YWWush37fjB2z7Jnjq-pTStOxc59Q0PrqNvGtuh5-PA7dBHF7YH3dEuXrIznyzc1bFP2fvj_G32lC1fF8-zh2VmsRRjJqxvGsw9aIHKo25qQK1LJ7A2ubWgEJ0vLFqkshBU1wAEpBvVaGHTXk7ZzcF3HYavjYtjtRo2-3djVRRCgTBaJyg7QDYMMQbnq3VoPyn8VAKqfVDVv6ASf3s0pWip84F628a_o0IpYwr5C_U1Z6E</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>TZAVARAS, A. E</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19990501</creationdate><title>Materials with internal variables and relaxation to conservation laws</title><author>TZAVARAS, A. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1cfdd26f05124f25db02559e12b76cc0422ef8c2c2a981abb00a0a5d4d51ccc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Studies</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TZAVARAS, A. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TZAVARAS, A. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials with internal variables and relaxation to conservation laws</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>146</volume><issue>2</issue><spage>129</spage><epage>155</epage><pages>129-155</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>.The theory of materials with internal state variables of Coleman &amp; Gurtin [CG] provides a natural framework to investigate the structure of relaxation approximations of conservation laws from the viewpoint of continuum thermomechanics. After reviewing the requirements imposed on constitutive theories by the principle of consistency with the Clausius-Duhem inequality, we pursue two specific theories pertaining to stress relaxation and relaxation of internal energy. They each lead to a relaxation framework for the theory of thermoelastic non-conductors of heat, equipped with globally defined "entropy" functions for the associated relaxation process. Next, we consider a semilinear model problem of stress relaxation. We discuss uniform stability and compactness for solutions of the relaxation system in the zero-relaxation limit, and establish convergence to the system of isothermal elastodynamics by using compensated compactness. Finally, we prove a strong dissipation estimate for the relaxation approximations proposed in Jin &amp; Xin [JX] when the limit system is equipped with a strictly convex entropy.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002050050139</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 1999-05, Vol.146 (2), p.129-155
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_881401755
source Springer Nature
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Physics
Solid mechanics
Structural and continuum mechanics
Studies
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title Materials with internal variables and relaxation to conservation laws
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20with%20internal%20variables%20and%20relaxation%20to%20conservation%20laws&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=TZAVARAS,%20A.%20E&rft.date=1999-05-01&rft.volume=146&rft.issue=2&rft.spage=129&rft.epage=155&rft.pages=129-155&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s002050050139&rft_dat=%3Cproquest_cross%3E2418796671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-1cfdd26f05124f25db02559e12b76cc0422ef8c2c2a981abb00a0a5d4d51ccc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881401755&rft_id=info:pmid/&rfr_iscdi=true