Loading…

Regularity for shearable nonlinearly elastic rods in obstacle problems

Based on the Cosserat theory describing planar deformations of shearable nonlinearly elastic rods we study the regularity of equilibrium states for problems where the deformations are restricted by rigid obstacles. We start with the discussion of general conditions modeling frictionless contact. In...

Full description

Saved in:
Bibliographic Details
Published in:Archive for rational mechanics and analysis 1998-11, Vol.145 (1), p.23-49
Main Author: SCHURICHT, F
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-fe649de9a9bef442bab5172aec41626f1737a9f62af7ca0f2f46eb53de28e1ce3
cites
container_end_page 49
container_issue 1
container_start_page 23
container_title Archive for rational mechanics and analysis
container_volume 145
creator SCHURICHT, F
description Based on the Cosserat theory describing planar deformations of shearable nonlinearly elastic rods we study the regularity of equilibrium states for problems where the deformations are restricted by rigid obstacles. We start with the discussion of general conditions modeling frictionless contact. In particular we motivate a contact condition that, roughly speaking, requires the contact forces to be directed normally, in a generalized sense, both to the obstacle and to the deformed shape of the rod. We show that there is a jump in the strains in the case of a concentrated contact force, i.e., the deformed shape of the rod has a corner. Then we assume some smoothness for the boundary of the obstacle and derive corresponding regularity for the contact forces. Finally we compare the results with the case of unshearable rods and obtain interesting qualitative differences.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s002050050123
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881401758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418796701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fe649de9a9bef442bab5172aec41626f1737a9f62af7ca0f2f46eb53de28e1ce3</originalsourceid><addsrcrecordid>eNpVkM1LAzEUxIMoWKtH70G8ruZrk81Riq1CQRA9L2_TF92SbmqyPfS_N6UFER48Bn4zA0PILWcPnDHzmBkTrGbluJBnZMKVFBXTRp6TCWNMVrYW5pJc5bw-SCH1hMzf8WsXIPXjnvqYaP5GSNAFpEMcQj8UFfYUA-SxdzTFVab9QGOXR3AF2qZY2E2-JhceQsab05-Sz_nzx-ylWr4tXmdPy8oJy8fKo1Z2hRZsh14p0UFXcyMAneJaaM-NNGC9FuCNA-aFVxq7Wq5QNMgdyim5O-aW4p8d5rFdx10aSmXbNFwxbuqmQNURcinmnNC329RvIO1bztrDUu2_pQp_fwqF7CD4BIPr85-ptlZLK38B5iVouA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881401758</pqid></control><display><type>article</type><title>Regularity for shearable nonlinearly elastic rods in obstacle problems</title><source>Springer Link</source><creator>SCHURICHT, F</creator><creatorcontrib>SCHURICHT, F</creatorcontrib><description>Based on the Cosserat theory describing planar deformations of shearable nonlinearly elastic rods we study the regularity of equilibrium states for problems where the deformations are restricted by rigid obstacles. We start with the discussion of general conditions modeling frictionless contact. In particular we motivate a contact condition that, roughly speaking, requires the contact forces to be directed normally, in a generalized sense, both to the obstacle and to the deformed shape of the rod. We show that there is a jump in the strains in the case of a concentrated contact force, i.e., the deformed shape of the rod has a corner. Then we assume some smoothness for the boundary of the obstacle and derive corresponding regularity for the contact forces. Finally we compare the results with the case of unshearable rods and obtain interesting qualitative differences.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050050123</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mechanical contact (friction...) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Studies ; Tribology and mechanical contacts</subject><ispartof>Archive for rational mechanics and analysis, 1998-11, Vol.145 (1), p.23-49</ispartof><rights>1999 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fe649de9a9bef442bab5172aec41626f1737a9f62af7ca0f2f46eb53de28e1ce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1599639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHURICHT, F</creatorcontrib><title>Regularity for shearable nonlinearly elastic rods in obstacle problems</title><title>Archive for rational mechanics and analysis</title><description>Based on the Cosserat theory describing planar deformations of shearable nonlinearly elastic rods we study the regularity of equilibrium states for problems where the deformations are restricted by rigid obstacles. We start with the discussion of general conditions modeling frictionless contact. In particular we motivate a contact condition that, roughly speaking, requires the contact forces to be directed normally, in a generalized sense, both to the obstacle and to the deformed shape of the rod. We show that there is a jump in the strains in the case of a concentrated contact force, i.e., the deformed shape of the rod has a corner. Then we assume some smoothness for the boundary of the obstacle and derive corresponding regularity for the contact forces. Finally we compare the results with the case of unshearable rods and obtain interesting qualitative differences.[PUBLICATION ABSTRACT]</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanical contact (friction...)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Studies</subject><subject>Tribology and mechanical contacts</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEUxIMoWKtH70G8ruZrk81Riq1CQRA9L2_TF92SbmqyPfS_N6UFER48Bn4zA0PILWcPnDHzmBkTrGbluJBnZMKVFBXTRp6TCWNMVrYW5pJc5bw-SCH1hMzf8WsXIPXjnvqYaP5GSNAFpEMcQj8UFfYUA-SxdzTFVab9QGOXR3AF2qZY2E2-JhceQsab05-Sz_nzx-ylWr4tXmdPy8oJy8fKo1Z2hRZsh14p0UFXcyMAneJaaM-NNGC9FuCNA-aFVxq7Wq5QNMgdyim5O-aW4p8d5rFdx10aSmXbNFwxbuqmQNURcinmnNC329RvIO1bztrDUu2_pQp_fwqF7CD4BIPr85-ptlZLK38B5iVouA</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>SCHURICHT, F</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19981101</creationdate><title>Regularity for shearable nonlinearly elastic rods in obstacle problems</title><author>SCHURICHT, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fe649de9a9bef442bab5172aec41626f1737a9f62af7ca0f2f46eb53de28e1ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanical contact (friction...)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Studies</topic><topic>Tribology and mechanical contacts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHURICHT, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHURICHT, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity for shearable nonlinearly elastic rods in obstacle problems</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>145</volume><issue>1</issue><spage>23</spage><epage>49</epage><pages>23-49</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>Based on the Cosserat theory describing planar deformations of shearable nonlinearly elastic rods we study the regularity of equilibrium states for problems where the deformations are restricted by rigid obstacles. We start with the discussion of general conditions modeling frictionless contact. In particular we motivate a contact condition that, roughly speaking, requires the contact forces to be directed normally, in a generalized sense, both to the obstacle and to the deformed shape of the rod. We show that there is a jump in the strains in the case of a concentrated contact force, i.e., the deformed shape of the rod has a corner. Then we assume some smoothness for the boundary of the obstacle and derive corresponding regularity for the contact forces. Finally we compare the results with the case of unshearable rods and obtain interesting qualitative differences.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002050050123</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 1998-11, Vol.145 (1), p.23-49
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_881401758
source Springer Link
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mechanical contact (friction...)
Physics
Solid mechanics
Structural and continuum mechanics
Studies
Tribology and mechanical contacts
title Regularity for shearable nonlinearly elastic rods in obstacle problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20for%20shearable%20nonlinearly%20elastic%20rods%20in%20obstacle%20problems&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=SCHURICHT,%20F&rft.date=1998-11-01&rft.volume=145&rft.issue=1&rft.spage=23&rft.epage=49&rft.pages=23-49&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s002050050123&rft_dat=%3Cproquest_cross%3E2418796701%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-fe649de9a9bef442bab5172aec41626f1737a9f62af7ca0f2f46eb53de28e1ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881401758&rft_id=info:pmid/&rfr_iscdi=true