Loading…

Effects of thermal annealing on the electrical and structural properties of Pt/Mo Schottky contacts on n-type GaN

Thermal annealing temperature effects on the electrical and structural properties of platinum/molybdenum (Pt/Mo) Schottky contacts on n-type GaN have been investigated by current–voltage (I–V), capacitance–voltage (C–V), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques....

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2009-10, Vol.20 (10), p.1018-1025
Main Authors: Reddy, Varra Rajagopal, Ravinandan, M., Koteswara Rao, P., Choi, Chel-Jong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermal annealing temperature effects on the electrical and structural properties of platinum/molybdenum (Pt/Mo) Schottky contacts on n-type GaN have been investigated by current–voltage (I–V), capacitance–voltage (C–V), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. As-deposited Pt/Mo/n-GaN Schottky diode exhibits barrier height of 0.75 eV (I–V) and 0.82 eV (C–V). Upon annealing at 400 and 500 °C, the barrier height slightly increased to 0.77 eV (I–V) and 0.92 eV (C–V) and 0.82 eV (I–V) and 0.97 eV (C–V), respectively. A maximum barrier height of 0.83 eV (I–V) and 0.99 eV (C–V) is obtained on the Pt/Mo contacts annealed at 600 °C. X-ray photoelectron spectroscopy results shows that the Ga 2p core-level shift towards the low-energy side for the contact annealed at 600 °C as compared to the as-deposited one. Based on the results of XPS and XRD studies, the formation of gallide phases at Pt/Mo/n-GaN interface could be the reason for the increase of Schottky barrier heights upon annealing at elevated temperatures. The atomic force microscopy (AFM) results showed that the Pt/Mo contact does not seriously suffer from thermal degradation during annealing even at 600 °C (RMS roughness of 5.41 nm). These results make Pt/Mo Schottky contacts attractive for high temperature device applications.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-008-9824-9