Loading…
Process-insensitive low-power design of switched-capacitor integrators
A generalized analytical technique is developed to design power optimized switched-capacitor integrators taking process variations into account. It is shown that the performance of a robustly designed power optimum switched-capacitor integrator is a monotonic function of the slew rate and the transc...
Saved in:
Published in: | IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2004-10, Vol.51 (10), p.1940-1952 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A generalized analytical technique is developed to design power optimized switched-capacitor integrators taking process variations into account. It is shown that the performance of a robustly designed power optimum switched-capacitor integrator is a monotonic function of the slew rate and the transconductance of the amplifier. The framework provides an analytical solution for fabrication foundry independent analog design and therefore eliminates the need for Monte Carlo simulations to estimate the effect of the worst-case performance variations. With this analytical approach, it is possible to migrate the design to technologies with smaller feature sizes while obtaining monotonic improvement in the performance. The validity of the proposed analytical model for the design of robust switched-capacitor integrators is demonstrated through transistor-level SPICE simulations using BSIM3v3 models. |
---|---|
ISSN: | 1549-8328 1057-7122 1558-0806 |
DOI: | 10.1109/TCSI.2004.835666 |