Loading…

Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network

We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2011-08, Vol.19 (4), p.1137-1150
Main Authors: Urgaonkar, R., Neely, M. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3
cites cdi_FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3
container_end_page 1150
container_issue 4
container_start_page 1137
container_title IEEE/ACM transactions on networking
container_volume 19
creator Urgaonkar, R.
Neely, M. J.
description We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function establishes the minimum time-average power required to support it. In this paper, we consider a cell-partitioned model of a delay-tolerant mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy function. Furthermore, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an increased delay.
doi_str_mv 10.1109/TNET.2010.2103367
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_883838950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5692874</ieee_id><sourcerecordid>919925352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3</originalsourceid><addsrcrecordid>eNpdkEFLwzAUx4soOKcfQLwEL546X5ImbY5jbk5wE6ReDVmajs4umWmL9NubsuFBcngJ7_f-vPyi6BbDBGMQj_l6nk8IhCfBQClPz6IRZiyLCeP8PNyB05hzQS6jq6bZAWAKhI-iz7Vpf5z_QjN1ULpqe_RutpWzSNkCrSpb7bs9mlvjtz1adFa3Q690Hin0ZGrVx7mrjVe2RSu3qWqDpgVaOo1OsdfRRanqxtyc6jj6WMzz2TJ-fXt-mU1fY51Q2sZEaMFT4BuVJCnmWmWlAqoSjnXGSRk-xCiHgrHCFNxAxgSGAifA0wQy2Gg6jh6OuQfvvjvTtHJfNdrUtbLGdY0UWAjCKCOBvP9H7lznbVhOZhkNRzAIED5C2rum8aaUB1_tle8lBjn4loNvOfiWJ99h5u44Uxlj_ngWlGdpQn8BVKp5vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883838950</pqid></control><display><type>article</type><title>Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Urgaonkar, R. ; Neely, M. J.</creator><creatorcontrib>Urgaonkar, R. ; Neely, M. J.</creatorcontrib><description>We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function establishes the minimum time-average power required to support it. In this paper, we consider a cell-partitioned model of a delay-tolerant mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy function. Furthermore, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an increased delay.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2010.2103367</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacity region ; Computational modeling ; Delay ; delay-tolerant networks ; Markov processes ; Mathematical analysis ; Mathematical models ; minimum energy scheduling ; mobile ad hoc network ; Mobile ad hoc networks ; Networks ; queueing analysis ; Receivers ; Relays ; Routing (telecommunications) ; Scheduling ; Steady-state ; Studies ; Vectors (mathematics) ; Wireless communication</subject><ispartof>IEEE/ACM transactions on networking, 2011-08, Vol.19 (4), p.1137-1150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3</citedby><cites>FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5692874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Urgaonkar, R.</creatorcontrib><creatorcontrib>Neely, M. J.</creatorcontrib><title>Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function establishes the minimum time-average power required to support it. In this paper, we consider a cell-partitioned model of a delay-tolerant mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy function. Furthermore, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an increased delay.</description><subject>Capacity region</subject><subject>Computational modeling</subject><subject>Delay</subject><subject>delay-tolerant networks</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>minimum energy scheduling</subject><subject>mobile ad hoc network</subject><subject>Mobile ad hoc networks</subject><subject>Networks</subject><subject>queueing analysis</subject><subject>Receivers</subject><subject>Relays</subject><subject>Routing (telecommunications)</subject><subject>Scheduling</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><subject>Wireless communication</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAUx4soOKcfQLwEL546X5ImbY5jbk5wE6ReDVmajs4umWmL9NubsuFBcngJ7_f-vPyi6BbDBGMQj_l6nk8IhCfBQClPz6IRZiyLCeP8PNyB05hzQS6jq6bZAWAKhI-iz7Vpf5z_QjN1ULpqe_RutpWzSNkCrSpb7bs9mlvjtz1adFa3Q690Hin0ZGrVx7mrjVe2RSu3qWqDpgVaOo1OsdfRRanqxtyc6jj6WMzz2TJ-fXt-mU1fY51Q2sZEaMFT4BuVJCnmWmWlAqoSjnXGSRk-xCiHgrHCFNxAxgSGAifA0wQy2Gg6jh6OuQfvvjvTtHJfNdrUtbLGdY0UWAjCKCOBvP9H7lznbVhOZhkNRzAIED5C2rum8aaUB1_tle8lBjn4loNvOfiWJ99h5u44Uxlj_ngWlGdpQn8BVKp5vw</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Urgaonkar, R.</creator><creator>Neely, M. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201108</creationdate><title>Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network</title><author>Urgaonkar, R. ; Neely, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Capacity region</topic><topic>Computational modeling</topic><topic>Delay</topic><topic>delay-tolerant networks</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>minimum energy scheduling</topic><topic>mobile ad hoc network</topic><topic>Mobile ad hoc networks</topic><topic>Networks</topic><topic>queueing analysis</topic><topic>Receivers</topic><topic>Relays</topic><topic>Routing (telecommunications)</topic><topic>Scheduling</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urgaonkar, R.</creatorcontrib><creatorcontrib>Neely, M. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urgaonkar, R.</au><au>Neely, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2011-08</date><risdate>2011</risdate><volume>19</volume><issue>4</issue><spage>1137</spage><epage>1150</epage><pages>1137-1150</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function establishes the minimum time-average power required to support it. In this paper, we consider a cell-partitioned model of a delay-tolerant mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy function. Furthermore, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an increased delay.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2010.2103367</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2011-08, Vol.19 (4), p.1137-1150
issn 1063-6692
1558-2566
language eng
recordid cdi_proquest_journals_883838950
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Capacity region
Computational modeling
Delay
delay-tolerant networks
Markov processes
Mathematical analysis
Mathematical models
minimum energy scheduling
mobile ad hoc network
Mobile ad hoc networks
Networks
queueing analysis
Receivers
Relays
Routing (telecommunications)
Scheduling
Steady-state
Studies
Vectors (mathematics)
Wireless communication
title Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Capacity%20Region%20and%20Minimum%20Energy%20Function%20for%20a%20Delay-Tolerant%20Mobile%20Ad%20Hoc%20Network&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Urgaonkar,%20R.&rft.date=2011-08&rft.volume=19&rft.issue=4&rft.spage=1137&rft.epage=1150&rft.pages=1137-1150&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2010.2103367&rft_dat=%3Cproquest_ieee_%3E919925352%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883838950&rft_id=info:pmid/&rft_ieee_id=5692874&rfr_iscdi=true