Loading…
Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network
We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing a...
Saved in:
Published in: | IEEE/ACM transactions on networking 2011-08, Vol.19 (4), p.1137-1150 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3 |
container_end_page | 1150 |
container_issue | 4 |
container_start_page | 1137 |
container_title | IEEE/ACM transactions on networking |
container_volume | 19 |
creator | Urgaonkar, R. Neely, M. J. |
description | We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function establishes the minimum time-average power required to support it. In this paper, we consider a cell-partitioned model of a delay-tolerant mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy function. Furthermore, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an increased delay. |
doi_str_mv | 10.1109/TNET.2010.2103367 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_883838950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5692874</ieee_id><sourcerecordid>919925352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3</originalsourceid><addsrcrecordid>eNpdkEFLwzAUx4soOKcfQLwEL546X5ImbY5jbk5wE6ReDVmajs4umWmL9NubsuFBcngJ7_f-vPyi6BbDBGMQj_l6nk8IhCfBQClPz6IRZiyLCeP8PNyB05hzQS6jq6bZAWAKhI-iz7Vpf5z_QjN1ULpqe_RutpWzSNkCrSpb7bs9mlvjtz1adFa3Q690Hin0ZGrVx7mrjVe2RSu3qWqDpgVaOo1OsdfRRanqxtyc6jj6WMzz2TJ-fXt-mU1fY51Q2sZEaMFT4BuVJCnmWmWlAqoSjnXGSRk-xCiHgrHCFNxAxgSGAifA0wQy2Gg6jh6OuQfvvjvTtHJfNdrUtbLGdY0UWAjCKCOBvP9H7lznbVhOZhkNRzAIED5C2rum8aaUB1_tle8lBjn4loNvOfiWJ99h5u44Uxlj_ngWlGdpQn8BVKp5vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883838950</pqid></control><display><type>article</type><title>Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Urgaonkar, R. ; Neely, M. J.</creator><creatorcontrib>Urgaonkar, R. ; Neely, M. J.</creatorcontrib><description>We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function establishes the minimum time-average power required to support it. In this paper, we consider a cell-partitioned model of a delay-tolerant mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy function. Furthermore, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an increased delay.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2010.2103367</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacity region ; Computational modeling ; Delay ; delay-tolerant networks ; Markov processes ; Mathematical analysis ; Mathematical models ; minimum energy scheduling ; mobile ad hoc network ; Mobile ad hoc networks ; Networks ; queueing analysis ; Receivers ; Relays ; Routing (telecommunications) ; Scheduling ; Steady-state ; Studies ; Vectors (mathematics) ; Wireless communication</subject><ispartof>IEEE/ACM transactions on networking, 2011-08, Vol.19 (4), p.1137-1150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3</citedby><cites>FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5692874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Urgaonkar, R.</creatorcontrib><creatorcontrib>Neely, M. J.</creatorcontrib><title>Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function establishes the minimum time-average power required to support it. In this paper, we consider a cell-partitioned model of a delay-tolerant mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy function. Furthermore, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an increased delay.</description><subject>Capacity region</subject><subject>Computational modeling</subject><subject>Delay</subject><subject>delay-tolerant networks</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>minimum energy scheduling</subject><subject>mobile ad hoc network</subject><subject>Mobile ad hoc networks</subject><subject>Networks</subject><subject>queueing analysis</subject><subject>Receivers</subject><subject>Relays</subject><subject>Routing (telecommunications)</subject><subject>Scheduling</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><subject>Wireless communication</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAUx4soOKcfQLwEL546X5ImbY5jbk5wE6ReDVmajs4umWmL9NubsuFBcngJ7_f-vPyi6BbDBGMQj_l6nk8IhCfBQClPz6IRZiyLCeP8PNyB05hzQS6jq6bZAWAKhI-iz7Vpf5z_QjN1ULpqe_RutpWzSNkCrSpb7bs9mlvjtz1adFa3Q690Hin0ZGrVx7mrjVe2RSu3qWqDpgVaOo1OsdfRRanqxtyc6jj6WMzz2TJ-fXt-mU1fY51Q2sZEaMFT4BuVJCnmWmWlAqoSjnXGSRk-xCiHgrHCFNxAxgSGAifA0wQy2Gg6jh6OuQfvvjvTtHJfNdrUtbLGdY0UWAjCKCOBvP9H7lznbVhOZhkNRzAIED5C2rum8aaUB1_tle8lBjn4loNvOfiWJ99h5u44Uxlj_ngWlGdpQn8BVKp5vw</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Urgaonkar, R.</creator><creator>Neely, M. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201108</creationdate><title>Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network</title><author>Urgaonkar, R. ; Neely, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Capacity region</topic><topic>Computational modeling</topic><topic>Delay</topic><topic>delay-tolerant networks</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>minimum energy scheduling</topic><topic>mobile ad hoc network</topic><topic>Mobile ad hoc networks</topic><topic>Networks</topic><topic>queueing analysis</topic><topic>Receivers</topic><topic>Relays</topic><topic>Routing (telecommunications)</topic><topic>Scheduling</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urgaonkar, R.</creatorcontrib><creatorcontrib>Neely, M. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urgaonkar, R.</au><au>Neely, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2011-08</date><risdate>2011</risdate><volume>19</volume><issue>4</issue><spage>1137</spage><epage>1150</epage><pages>1137-1150</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>We investigate two quantities of interest in a delay-tolerant mobile ad hoc network: the network capacity region and the minimum energy function. The network capacity region is defined as the set of all input rates that the network can stably support considering all possible scheduling and routing algorithms. Given any input rate vector in this region, the minimum energy function establishes the minimum time-average power required to support it. In this paper, we consider a cell-partitioned model of a delay-tolerant mobile ad hoc network with general Markovian mobility. This simple model incorporates the essential features of locality of wireless transmissions as well as node mobility and enables us to exactly compute the corresponding network capacity and minimum energy function. Furthermore, we propose simple schemes that offer performance guarantees that are arbitrarily close to these bounds at the cost of an increased delay.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2010.2103367</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2011-08, Vol.19 (4), p.1137-1150 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_proquest_journals_883838950 |
source | IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Capacity region Computational modeling Delay delay-tolerant networks Markov processes Mathematical analysis Mathematical models minimum energy scheduling mobile ad hoc network Mobile ad hoc networks Networks queueing analysis Receivers Relays Routing (telecommunications) Scheduling Steady-state Studies Vectors (mathematics) Wireless communication |
title | Network Capacity Region and Minimum Energy Function for a Delay-Tolerant Mobile Ad Hoc Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Capacity%20Region%20and%20Minimum%20Energy%20Function%20for%20a%20Delay-Tolerant%20Mobile%20Ad%20Hoc%20Network&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Urgaonkar,%20R.&rft.date=2011-08&rft.volume=19&rft.issue=4&rft.spage=1137&rft.epage=1150&rft.pages=1137-1150&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2010.2103367&rft_dat=%3Cproquest_ieee_%3E919925352%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-29c96706ba44716ca8fa03a461c862f0335360d55ded6e085910d140674080bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883838950&rft_id=info:pmid/&rft_ieee_id=5692874&rfr_iscdi=true |