Loading…

Sliding-mode motion controller with adaptive fuzzy disturbance estimation

This paper proposes a motion control scheme which belongs to the class of the control schemes known as sliding-mode control with disturbance estimation. A novel adaptive fuzzy disturbance estimator works as an estimator of a major part of robot dynamics. The adaptation algorithm is derived by using...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2004-10, Vol.51 (5), p.963-971
Main Authors: Rojko, A., Jezernik, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a motion control scheme which belongs to the class of the control schemes known as sliding-mode control with disturbance estimation. A novel adaptive fuzzy disturbance estimator works as an estimator of a major part of robot dynamics. The adaptation algorithm is derived by using the Lyapunov stability theory and provides global asymptotic stability of the state errors, resulting in the sliding-mode regime. The structure of the disturbance estimator is optimized by the introduction of three fuzzy logic subsystems, based on the physical properties of the robot mechanism. This also significantly lowers the computational burden and enables real-time implementation. Performance of the proposed controller scheme, as well as some practical design aspects, are demonstrated by the control of a direct-drive robot.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2004.834945