Loading…

Modelling the distribution of diameter growth along the stem in Scots pine

This paper presents an empirical model for the distribution of diameter growth along the stem in Scots pine (Pinus sylvestris L.) and for the consequent stem form over time. First, the distribution of annual mass growth in the stem is determined as a function of the total annual growth in stem mass,...

Full description

Saved in:
Bibliographic Details
Published in:Trees (Berlin, West) West), 2006-05, Vol.20 (3), p.391-402
Main Authors: Ikonen, V.P, Kellomäki, S, Väisänen, H, Peltola, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an empirical model for the distribution of diameter growth along the stem in Scots pine (Pinus sylvestris L.) and for the consequent stem form over time. First, the distribution of annual mass growth in the stem is determined as a function of the total annual growth in stem mass, current stem mass and the distribution of the latter along the stem. Second, the distribution of diameter growth is obtained by converting the fraction of annual growth in the stem mass at a given height in the stem into the thickness of the annual ring at the same height. Application of the model to Scots pine data sets including both young and mature trees not used in parameter estimation showed that the model was capable of reconstructing the distribution of diameter growth from the stem butt to the apex and from the pith to the stem surface at any height in the stem in both young and mature trees. The resulting empirical model was also linked to a physiological, process-based model in order to study its performance in a simulated stand. Simulations representing trees grown in unthinned and thinned Scots pine stands with trees of different status (from dominant to suppressed) showed that the response in tree growth to thinning in terms of the distribution of diameter growth along the stem was quite realistic relative to measured data.[PUBLICATION ABSTRACT]
ISSN:0931-1890
1432-2285
DOI:10.1007/s00468-006-0053-7