Loading…

Intelligent feedforward control and payload estimation for a two-link robotic manipulator

Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-netwo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2003-06, Vol.8 (2), p.277-282
Main Authors: Nho, H.C., Meckl, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33
cites cdi_FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33
container_end_page 282
container_issue 2
container_start_page 277
container_title IEEE/ASME transactions on mechatronics
container_volume 8
creator Nho, H.C.
Meckl, P.
description Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty.
doi_str_mv 10.1109/TMECH.2003.812847
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_884309332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1206484</ieee_id><sourcerecordid>901706993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33</originalsourceid><addsrcrecordid>eNqFkdFLHDEQxpfSQq3tHyC-BKH1aa-TTXY3eSyHrYLFFwv1KcxlJxLdS65JDvG_N9cTBB9aCCSQ33wz831Nc8RhwTnor9c_z5bniw5ALBTvlBzfNAdcS94Cl7_f1jco0Uop-vfNh5zvAEBy4AfNzUUoNM_-lkJhjmhyMT1gmpiNoaQ4MwwT2-DjHHFilItfY_ExsIoxZOUhtrMP9yzFVSzesjUGv9nOWGL62LxzOGf69HwfNr--n10vz9vLqx8Xy2-XrZVcllb0zqF0qictBt0561BZt0LB6yEcp2GlNDiBk9NkOZHoe9mJwZKyQqAQh83pXneT4p9tHdGsfbZ1JwwUt9lo4CMMWu_IL_8kq226mqL_D45KK-hlBU9egXdxm0Jd1yglBdSmXYX4HrIp5pzImU2qNqZHw8HswjN_wzO78Mw-vFrz-VkYs8XZJQzW55dCqdTI9U77eM95Inr57mCQtf8TyVGjvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884309332</pqid></control><display><type>article</type><title>Intelligent feedforward control and payload estimation for a two-link robotic manipulator</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Nho, H.C. ; Meckl, P.</creator><creatorcontrib>Nho, H.C. ; Meckl, P.</creatorcontrib><description>Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2003.812847</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Articulated ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Drives ; Exact sciences and technology ; Intelligent control ; Intelligent robots ; Learning and adaptive systems ; Linkage mechanisms, cams ; Manipulator dynamics ; Manipulators ; Mechanical engineering. Machine design ; Multi-layer neural network ; Neural networks ; Payloads ; PD control ; Proportional control ; Robot control ; Robotics ; Robots ; Torque control ; Tracking ; Trajectory ; Uncertainty</subject><ispartof>IEEE/ASME transactions on mechatronics, 2003-06, Vol.8 (2), p.277-282</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33</citedby><cites>FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1206484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14887192$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nho, H.C.</creatorcontrib><creatorcontrib>Meckl, P.</creatorcontrib><title>Intelligent feedforward control and payload estimation for a two-link robotic manipulator</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty.</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Articulated</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Drives</subject><subject>Exact sciences and technology</subject><subject>Intelligent control</subject><subject>Intelligent robots</subject><subject>Learning and adaptive systems</subject><subject>Linkage mechanisms, cams</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Mechanical engineering. Machine design</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Payloads</subject><subject>PD control</subject><subject>Proportional control</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Torque control</subject><subject>Tracking</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkdFLHDEQxpfSQq3tHyC-BKH1aa-TTXY3eSyHrYLFFwv1KcxlJxLdS65JDvG_N9cTBB9aCCSQ33wz831Nc8RhwTnor9c_z5bniw5ALBTvlBzfNAdcS94Cl7_f1jco0Uop-vfNh5zvAEBy4AfNzUUoNM_-lkJhjmhyMT1gmpiNoaQ4MwwT2-DjHHFilItfY_ExsIoxZOUhtrMP9yzFVSzesjUGv9nOWGL62LxzOGf69HwfNr--n10vz9vLqx8Xy2-XrZVcllb0zqF0qictBt0561BZt0LB6yEcp2GlNDiBk9NkOZHoe9mJwZKyQqAQh83pXneT4p9tHdGsfbZ1JwwUt9lo4CMMWu_IL_8kq226mqL_D45KK-hlBU9egXdxm0Jd1yglBdSmXYX4HrIp5pzImU2qNqZHw8HswjN_wzO78Mw-vFrz-VkYs8XZJQzW55dCqdTI9U77eM95Inr57mCQtf8TyVGjvw</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Nho, H.C.</creator><creator>Meckl, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>7U5</scope><scope>F28</scope></search><sort><creationdate>20030601</creationdate><title>Intelligent feedforward control and payload estimation for a two-link robotic manipulator</title><author>Nho, H.C. ; Meckl, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Articulated</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Drives</topic><topic>Exact sciences and technology</topic><topic>Intelligent control</topic><topic>Intelligent robots</topic><topic>Learning and adaptive systems</topic><topic>Linkage mechanisms, cams</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Mechanical engineering. Machine design</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Payloads</topic><topic>PD control</topic><topic>Proportional control</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Torque control</topic><topic>Tracking</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nho, H.C.</creatorcontrib><creatorcontrib>Meckl, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nho, H.C.</au><au>Meckl, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent feedforward control and payload estimation for a two-link robotic manipulator</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>8</volume><issue>2</issue><spage>277</spage><epage>282</epage><pages>277-282</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMECH.2003.812847</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2003-06, Vol.8 (2), p.277-282
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_884309332
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Architecture
Articulated
Artificial intelligence
Computer science
control theory
systems
Control theory. Systems
Drives
Exact sciences and technology
Intelligent control
Intelligent robots
Learning and adaptive systems
Linkage mechanisms, cams
Manipulator dynamics
Manipulators
Mechanical engineering. Machine design
Multi-layer neural network
Neural networks
Payloads
PD control
Proportional control
Robot control
Robotics
Robots
Torque control
Tracking
Trajectory
Uncertainty
title Intelligent feedforward control and payload estimation for a two-link robotic manipulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20feedforward%20control%20and%20payload%20estimation%20for%20a%20two-link%20robotic%20manipulator&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Nho,%20H.C.&rft.date=2003-06-01&rft.volume=8&rft.issue=2&rft.spage=277&rft.epage=282&rft.pages=277-282&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2003.812847&rft_dat=%3Cproquest_cross%3E901706993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884309332&rft_id=info:pmid/&rft_ieee_id=1206484&rfr_iscdi=true