Loading…
Intelligent feedforward control and payload estimation for a two-link robotic manipulator
Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-netwo...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2003-06, Vol.8 (2), p.277-282 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33 |
container_end_page | 282 |
container_issue | 2 |
container_start_page | 277 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 8 |
creator | Nho, H.C. Meckl, P. |
description | Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty. |
doi_str_mv | 10.1109/TMECH.2003.812847 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_884309332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1206484</ieee_id><sourcerecordid>901706993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33</originalsourceid><addsrcrecordid>eNqFkdFLHDEQxpfSQq3tHyC-BKH1aa-TTXY3eSyHrYLFFwv1KcxlJxLdS65JDvG_N9cTBB9aCCSQ33wz831Nc8RhwTnor9c_z5bniw5ALBTvlBzfNAdcS94Cl7_f1jco0Uop-vfNh5zvAEBy4AfNzUUoNM_-lkJhjmhyMT1gmpiNoaQ4MwwT2-DjHHFilItfY_ExsIoxZOUhtrMP9yzFVSzesjUGv9nOWGL62LxzOGf69HwfNr--n10vz9vLqx8Xy2-XrZVcllb0zqF0qictBt0561BZt0LB6yEcp2GlNDiBk9NkOZHoe9mJwZKyQqAQh83pXneT4p9tHdGsfbZ1JwwUt9lo4CMMWu_IL_8kq226mqL_D45KK-hlBU9egXdxm0Jd1yglBdSmXYX4HrIp5pzImU2qNqZHw8HswjN_wzO78Mw-vFrz-VkYs8XZJQzW55dCqdTI9U77eM95Inr57mCQtf8TyVGjvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884309332</pqid></control><display><type>article</type><title>Intelligent feedforward control and payload estimation for a two-link robotic manipulator</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Nho, H.C. ; Meckl, P.</creator><creatorcontrib>Nho, H.C. ; Meckl, P.</creatorcontrib><description>Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2003.812847</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Articulated ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Drives ; Exact sciences and technology ; Intelligent control ; Intelligent robots ; Learning and adaptive systems ; Linkage mechanisms, cams ; Manipulator dynamics ; Manipulators ; Mechanical engineering. Machine design ; Multi-layer neural network ; Neural networks ; Payloads ; PD control ; Proportional control ; Robot control ; Robotics ; Robots ; Torque control ; Tracking ; Trajectory ; Uncertainty</subject><ispartof>IEEE/ASME transactions on mechatronics, 2003-06, Vol.8 (2), p.277-282</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33</citedby><cites>FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1206484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14887192$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nho, H.C.</creatorcontrib><creatorcontrib>Meckl, P.</creatorcontrib><title>Intelligent feedforward control and payload estimation for a two-link robotic manipulator</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty.</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Articulated</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Drives</subject><subject>Exact sciences and technology</subject><subject>Intelligent control</subject><subject>Intelligent robots</subject><subject>Learning and adaptive systems</subject><subject>Linkage mechanisms, cams</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Mechanical engineering. Machine design</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Payloads</subject><subject>PD control</subject><subject>Proportional control</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Torque control</subject><subject>Tracking</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkdFLHDEQxpfSQq3tHyC-BKH1aa-TTXY3eSyHrYLFFwv1KcxlJxLdS65JDvG_N9cTBB9aCCSQ33wz831Nc8RhwTnor9c_z5bniw5ALBTvlBzfNAdcS94Cl7_f1jco0Uop-vfNh5zvAEBy4AfNzUUoNM_-lkJhjmhyMT1gmpiNoaQ4MwwT2-DjHHFilItfY_ExsIoxZOUhtrMP9yzFVSzesjUGv9nOWGL62LxzOGf69HwfNr--n10vz9vLqx8Xy2-XrZVcllb0zqF0qictBt0561BZt0LB6yEcp2GlNDiBk9NkOZHoe9mJwZKyQqAQh83pXneT4p9tHdGsfbZ1JwwUt9lo4CMMWu_IL_8kq226mqL_D45KK-hlBU9egXdxm0Jd1yglBdSmXYX4HrIp5pzImU2qNqZHw8HswjN_wzO78Mw-vFrz-VkYs8XZJQzW55dCqdTI9U77eM95Inr57mCQtf8TyVGjvw</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Nho, H.C.</creator><creator>Meckl, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>7U5</scope><scope>F28</scope></search><sort><creationdate>20030601</creationdate><title>Intelligent feedforward control and payload estimation for a two-link robotic manipulator</title><author>Nho, H.C. ; Meckl, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Articulated</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Drives</topic><topic>Exact sciences and technology</topic><topic>Intelligent control</topic><topic>Intelligent robots</topic><topic>Learning and adaptive systems</topic><topic>Linkage mechanisms, cams</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Mechanical engineering. Machine design</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Payloads</topic><topic>PD control</topic><topic>Proportional control</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Torque control</topic><topic>Tracking</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nho, H.C.</creatorcontrib><creatorcontrib>Meckl, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nho, H.C.</au><au>Meckl, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent feedforward control and payload estimation for a two-link robotic manipulator</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>8</volume><issue>2</issue><spage>277</spage><epage>282</epage><pages>277-282</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMECH.2003.812847</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2003-06, Vol.8 (2), p.277-282 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_884309332 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Architecture Articulated Artificial intelligence Computer science control theory systems Control theory. Systems Drives Exact sciences and technology Intelligent control Intelligent robots Learning and adaptive systems Linkage mechanisms, cams Manipulator dynamics Manipulators Mechanical engineering. Machine design Multi-layer neural network Neural networks Payloads PD control Proportional control Robot control Robotics Robots Torque control Tracking Trajectory Uncertainty |
title | Intelligent feedforward control and payload estimation for a two-link robotic manipulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20feedforward%20control%20and%20payload%20estimation%20for%20a%20two-link%20robotic%20manipulator&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Nho,%20H.C.&rft.date=2003-06-01&rft.volume=8&rft.issue=2&rft.spage=277&rft.epage=282&rft.pages=277-282&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2003.812847&rft_dat=%3Cproquest_cross%3E901706993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-35ffa4f85e93692fcfa8cfba31a31ea7d6b890f3adf9ec1ee3554236ce8c33a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884309332&rft_id=info:pmid/&rft_ieee_id=1206484&rfr_iscdi=true |