Loading…

Intelligent control of quadruped gallops

In this paper, a new intelligent control approach for high-speed quadruped bounding and galloping gaits is presented. The controller is capable of learning the leg touchdown angles and leg thrusts required to track the desired running height and velocity of a quadruped in only one stride. Training o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2003-12, Vol.8 (4), p.446-456
Main Authors: Marhefka, D.W., Orin, D.E., Schmiedeler, J.P., Waldron, K.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-696a2d27a503b1f290b899fe692f8ff1b05380ee7b63168fbc9014db848afd553
cites cdi_FETCH-LOGICAL-c383t-696a2d27a503b1f290b899fe692f8ff1b05380ee7b63168fbc9014db848afd553
container_end_page 456
container_issue 4
container_start_page 446
container_title IEEE/ASME transactions on mechatronics
container_volume 8
creator Marhefka, D.W.
Orin, D.E.
Schmiedeler, J.P.
Waldron, K.J.
description In this paper, a new intelligent control approach for high-speed quadruped bounding and galloping gaits is presented. The controller is capable of learning the leg touchdown angles and leg thrusts required to track the desired running height and velocity of a quadruped in only one stride. Training of the controller is accomplished not with a mathematical model, but with simple rules based on a heuristic knowledge of the quadruped mechanics. The result is a controller that produces better velocity and height tracking characteristics than a Raibert-based controller and is robust to modeling errors. Additionally, by making use of the natural dynamics of the system, gait characteristics comparable to biological quadrupeds result. The status of a legged machine being constructed for demonstration of the control approach and further study of the characteristics of galloping is also presented.
doi_str_mv 10.1109/TMECH.2003.820001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_884310635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1255398</ieee_id><sourcerecordid>2429536481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-696a2d27a503b1f290b899fe692f8ff1b05380ee7b63168fbc9014db848afd553</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWKs_QLwEwY9L6s7uJpk9Sqm2UPFSwduySXZLSpptd5OD_96tKQgevMwMzDMz77xRdA1kAkDE0-ptNp1PKCFsgiESOIlGIDgkBPjnaagJsoRzlp5HF95vAsGBwCh6XLSdbpp6rdsuLm3bOdvE1sT7XlWu3-kqXqumsTt_GZ0Z1Xh9dczj6ONltprOk-X762L6vExKhqxLMpEpWtFcpYQVYKggBQphdCaoQWOgIClDonVeZAwyNEUpgsKqQI7KVGnKxtHDsHfn7L7XvpPb2pdBomq17b0MeA6Iggby_l-SIhcEMxHA2z_gxvauDV9IRM6AZOxwFwaodNZ7p43cuXqr3JcEIg8Wyx-L5cFiOVgcZu6Oi5UvVWOcasva_w6mLMc8ZYG7Gbhaa_3bpuFdgewbB9SCVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884310635</pqid></control><display><type>article</type><title>Intelligent control of quadruped gallops</title><source>IEEE Xplore (Online service)</source><creator>Marhefka, D.W. ; Orin, D.E. ; Schmiedeler, J.P. ; Waldron, K.J.</creator><creatorcontrib>Marhefka, D.W. ; Orin, D.E. ; Schmiedeler, J.P. ; Waldron, K.J.</creatorcontrib><description>In this paper, a new intelligent control approach for high-speed quadruped bounding and galloping gaits is presented. The controller is capable of learning the leg touchdown angles and leg thrusts required to track the desired running height and velocity of a quadruped in only one stride. Training of the controller is accomplished not with a mathematical model, but with simple rules based on a heuristic knowledge of the quadruped mechanics. The result is a controller that produces better velocity and height tracking characteristics than a Raibert-based controller and is robust to modeling errors. Additionally, by making use of the natural dynamics of the system, gait characteristics comparable to biological quadrupeds result. The status of a legged machine being constructed for demonstration of the control approach and further study of the characteristics of galloping is also presented.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2003.820001</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Animals ; Applied sciences ; Automatic control ; Biological ; Biological and medical sciences ; Biological system modeling ; Biomechanics. Biorheology ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Gait ; Galloping ; Intelligent control ; Leg ; Legged locomotion ; Mathematical model ; Mathematical models ; Mechanical engineering ; Mechatronics ; Robotics ; Rule based ; Tissues, organs and organisms biophysics ; Velocity control</subject><ispartof>IEEE/ASME transactions on mechatronics, 2003-12, Vol.8 (4), p.446-456</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-696a2d27a503b1f290b899fe692f8ff1b05380ee7b63168fbc9014db848afd553</citedby><cites>FETCH-LOGICAL-c383t-696a2d27a503b1f290b899fe692f8ff1b05380ee7b63168fbc9014db848afd553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1255398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15378753$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marhefka, D.W.</creatorcontrib><creatorcontrib>Orin, D.E.</creatorcontrib><creatorcontrib>Schmiedeler, J.P.</creatorcontrib><creatorcontrib>Waldron, K.J.</creatorcontrib><title>Intelligent control of quadruped gallops</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>In this paper, a new intelligent control approach for high-speed quadruped bounding and galloping gaits is presented. The controller is capable of learning the leg touchdown angles and leg thrusts required to track the desired running height and velocity of a quadruped in only one stride. Training of the controller is accomplished not with a mathematical model, but with simple rules based on a heuristic knowledge of the quadruped mechanics. The result is a controller that produces better velocity and height tracking characteristics than a Raibert-based controller and is robust to modeling errors. Additionally, by making use of the natural dynamics of the system, gait characteristics comparable to biological quadrupeds result. The status of a legged machine being constructed for demonstration of the control approach and further study of the characteristics of galloping is also presented.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Biological</subject><subject>Biological and medical sciences</subject><subject>Biological system modeling</subject><subject>Biomechanics. Biorheology</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gait</subject><subject>Galloping</subject><subject>Intelligent control</subject><subject>Leg</subject><subject>Legged locomotion</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Rule based</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Velocity control</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhoMoWKs_QLwEwY9L6s7uJpk9Sqm2UPFSwduySXZLSpptd5OD_96tKQgevMwMzDMz77xRdA1kAkDE0-ptNp1PKCFsgiESOIlGIDgkBPjnaagJsoRzlp5HF95vAsGBwCh6XLSdbpp6rdsuLm3bOdvE1sT7XlWu3-kqXqumsTt_GZ0Z1Xh9dczj6ONltprOk-X762L6vExKhqxLMpEpWtFcpYQVYKggBQphdCaoQWOgIClDonVeZAwyNEUpgsKqQI7KVGnKxtHDsHfn7L7XvpPb2pdBomq17b0MeA6Iggby_l-SIhcEMxHA2z_gxvauDV9IRM6AZOxwFwaodNZ7p43cuXqr3JcEIg8Wyx-L5cFiOVgcZu6Oi5UvVWOcasva_w6mLMc8ZYG7Gbhaa_3bpuFdgewbB9SCVA</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Marhefka, D.W.</creator><creator>Orin, D.E.</creator><creator>Schmiedeler, J.P.</creator><creator>Waldron, K.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>F28</scope></search><sort><creationdate>20031201</creationdate><title>Intelligent control of quadruped gallops</title><author>Marhefka, D.W. ; Orin, D.E. ; Schmiedeler, J.P. ; Waldron, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-696a2d27a503b1f290b899fe692f8ff1b05380ee7b63168fbc9014db848afd553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Biological</topic><topic>Biological and medical sciences</topic><topic>Biological system modeling</topic><topic>Biomechanics. Biorheology</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gait</topic><topic>Galloping</topic><topic>Intelligent control</topic><topic>Leg</topic><topic>Legged locomotion</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Rule based</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marhefka, D.W.</creatorcontrib><creatorcontrib>Orin, D.E.</creatorcontrib><creatorcontrib>Schmiedeler, J.P.</creatorcontrib><creatorcontrib>Waldron, K.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marhefka, D.W.</au><au>Orin, D.E.</au><au>Schmiedeler, J.P.</au><au>Waldron, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent control of quadruped gallops</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2003-12-01</date><risdate>2003</risdate><volume>8</volume><issue>4</issue><spage>446</spage><epage>456</epage><pages>446-456</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>In this paper, a new intelligent control approach for high-speed quadruped bounding and galloping gaits is presented. The controller is capable of learning the leg touchdown angles and leg thrusts required to track the desired running height and velocity of a quadruped in only one stride. Training of the controller is accomplished not with a mathematical model, but with simple rules based on a heuristic knowledge of the quadruped mechanics. The result is a controller that produces better velocity and height tracking characteristics than a Raibert-based controller and is robust to modeling errors. Additionally, by making use of the natural dynamics of the system, gait characteristics comparable to biological quadrupeds result. The status of a legged machine being constructed for demonstration of the control approach and further study of the characteristics of galloping is also presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMECH.2003.820001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2003-12, Vol.8 (4), p.446-456
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_884310635
source IEEE Xplore (Online service)
subjects Animals
Applied sciences
Automatic control
Biological
Biological and medical sciences
Biological system modeling
Biomechanics. Biorheology
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
Dynamical systems
Dynamics
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Gait
Galloping
Intelligent control
Leg
Legged locomotion
Mathematical model
Mathematical models
Mechanical engineering
Mechatronics
Robotics
Rule based
Tissues, organs and organisms biophysics
Velocity control
title Intelligent control of quadruped gallops
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20control%20of%20quadruped%20gallops&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Marhefka,%20D.W.&rft.date=2003-12-01&rft.volume=8&rft.issue=4&rft.spage=446&rft.epage=456&rft.pages=446-456&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2003.820001&rft_dat=%3Cproquest_cross%3E2429536481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-696a2d27a503b1f290b899fe692f8ff1b05380ee7b63168fbc9014db848afd553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884310635&rft_id=info:pmid/&rft_ieee_id=1255398&rfr_iscdi=true