Loading…

Nonlinear FIR adaptive filters with a gradient adaptive amplitude in the nonlinearity

A nonlinear gradient descent (NGD) learning algorithm with an adaptive amplitude of the nonlinearity is derived for the class of nonlinear finite impulse response (FIR) adaptive filters (dynamical perceptron). This is based on the adaptive amplitude backpropagation (AABP) algorithm for large-scale n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2002-08, Vol.9 (8), p.253-255
Main Authors: Hanna, A.I., Mandic, D.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-eca8e312f9a03e9199e1aa36cf08c424b5be9ea5d3f8b3144238aa4c036c0e7c3
cites cdi_FETCH-LOGICAL-c381t-eca8e312f9a03e9199e1aa36cf08c424b5be9ea5d3f8b3144238aa4c036c0e7c3
container_end_page 255
container_issue 8
container_start_page 253
container_title IEEE signal processing letters
container_volume 9
creator Hanna, A.I.
Mandic, D.P.
description A nonlinear gradient descent (NGD) learning algorithm with an adaptive amplitude of the nonlinearity is derived for the class of nonlinear finite impulse response (FIR) adaptive filters (dynamical perceptron). This is based on the adaptive amplitude backpropagation (AABP) algorithm for large-scale neural networks. The amplitude of the nonlinear activation function is made gradient adaptive to give the adaptive amplitude nonlinear gradient descent (AANGD) algorithm, making the AANGD suitable for processing nonlinear and nonstationary input signals with a large dynamical range. Experimental results show the AANGD algorithm outperforming the standard NGD algorithm on both colored and nonlinear input with large dynamics. Despite its simplicity, the considered algorithm proves suitable for adaptive filtering of nonlinear and nonstationary signals.
doi_str_mv 10.1109/LSP.2002.803001
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_884359019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1034991</ieee_id><sourcerecordid>1671380579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-eca8e312f9a03e9199e1aa36cf08c424b5be9ea5d3f8b3144238aa4c036c0e7c3</originalsourceid><addsrcrecordid>eNqF0TFPwzAQBeAIgUQpzAwsFgNiSXsXx409oopCpQoQ0Nly0wt1lSbFdkD996QqCMQA093wvZNOL4pOEXqIoPqTp4deApD0JHAA3Is6KISMEz7A_XaHDGKlQB5GR94vAUCiFJ1oeldXpa3IODYaPzIzN-tg34gVtgzkPHu3YcEMe3FmbqkK38Cs1qUNzZyYrVhYEKu-DtmwOY4OClN6Ovmc3Wg6un4e3saT-5vx8GoS51xiiCk3kjgmhTLASaFShMbwQV6AzNMknYkZKTJizgs545imCZfGpDm0BCjLeTe62N1du_q1IR_0yvqcytJUVDdeJzIVHBD_h9kAhJRbePknxEGGXILIVEvPf9Fl3biq_VdLmXKhALeov0O5q713VOi1syvjNhpBb3vTbW9625ve9dYmznYJS0Q_NE-VQv4BhuWTEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884359019</pqid></control><display><type>article</type><title>Nonlinear FIR adaptive filters with a gradient adaptive amplitude in the nonlinearity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hanna, A.I. ; Mandic, D.P.</creator><creatorcontrib>Hanna, A.I. ; Mandic, D.P.</creatorcontrib><description>A nonlinear gradient descent (NGD) learning algorithm with an adaptive amplitude of the nonlinearity is derived for the class of nonlinear finite impulse response (FIR) adaptive filters (dynamical perceptron). This is based on the adaptive amplitude backpropagation (AABP) algorithm for large-scale neural networks. The amplitude of the nonlinear activation function is made gradient adaptive to give the adaptive amplitude nonlinear gradient descent (AANGD) algorithm, making the AANGD suitable for processing nonlinear and nonstationary input signals with a large dynamical range. Experimental results show the AANGD algorithm outperforming the standard NGD algorithm on both colored and nonlinear input with large dynamics. Despite its simplicity, the considered algorithm proves suitable for adaptive filtering of nonlinear and nonstationary signals.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2002.803001</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive filters ; Algorithms ; Amplitudes ; Backpropagation algorithms ; Biomedical signal processing ; Constraint optimization ; Descent ; Filtering algorithms ; Finite impulse response filter ; Impulse response ; Large-scale systems ; Neural networks ; Nonlinearity ; Signal processing ; Signal processing algorithms</subject><ispartof>IEEE signal processing letters, 2002-08, Vol.9 (8), p.253-255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-eca8e312f9a03e9199e1aa36cf08c424b5be9ea5d3f8b3144238aa4c036c0e7c3</citedby><cites>FETCH-LOGICAL-c381t-eca8e312f9a03e9199e1aa36cf08c424b5be9ea5d3f8b3144238aa4c036c0e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1034991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Hanna, A.I.</creatorcontrib><creatorcontrib>Mandic, D.P.</creatorcontrib><title>Nonlinear FIR adaptive filters with a gradient adaptive amplitude in the nonlinearity</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>A nonlinear gradient descent (NGD) learning algorithm with an adaptive amplitude of the nonlinearity is derived for the class of nonlinear finite impulse response (FIR) adaptive filters (dynamical perceptron). This is based on the adaptive amplitude backpropagation (AABP) algorithm for large-scale neural networks. The amplitude of the nonlinear activation function is made gradient adaptive to give the adaptive amplitude nonlinear gradient descent (AANGD) algorithm, making the AANGD suitable for processing nonlinear and nonstationary input signals with a large dynamical range. Experimental results show the AANGD algorithm outperforming the standard NGD algorithm on both colored and nonlinear input with large dynamics. Despite its simplicity, the considered algorithm proves suitable for adaptive filtering of nonlinear and nonstationary signals.</description><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Backpropagation algorithms</subject><subject>Biomedical signal processing</subject><subject>Constraint optimization</subject><subject>Descent</subject><subject>Filtering algorithms</subject><subject>Finite impulse response filter</subject><subject>Impulse response</subject><subject>Large-scale systems</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqF0TFPwzAQBeAIgUQpzAwsFgNiSXsXx409oopCpQoQ0Nly0wt1lSbFdkD996QqCMQA093wvZNOL4pOEXqIoPqTp4deApD0JHAA3Is6KISMEz7A_XaHDGKlQB5GR94vAUCiFJ1oeldXpa3IODYaPzIzN-tg34gVtgzkPHu3YcEMe3FmbqkK38Cs1qUNzZyYrVhYEKu-DtmwOY4OClN6Ovmc3Wg6un4e3saT-5vx8GoS51xiiCk3kjgmhTLASaFShMbwQV6AzNMknYkZKTJizgs545imCZfGpDm0BCjLeTe62N1du_q1IR_0yvqcytJUVDdeJzIVHBD_h9kAhJRbePknxEGGXILIVEvPf9Fl3biq_VdLmXKhALeov0O5q713VOi1syvjNhpBb3vTbW9625ve9dYmznYJS0Q_NE-VQv4BhuWTEQ</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Hanna, A.I.</creator><creator>Mandic, D.P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020801</creationdate><title>Nonlinear FIR adaptive filters with a gradient adaptive amplitude in the nonlinearity</title><author>Hanna, A.I. ; Mandic, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-eca8e312f9a03e9199e1aa36cf08c424b5be9ea5d3f8b3144238aa4c036c0e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Backpropagation algorithms</topic><topic>Biomedical signal processing</topic><topic>Constraint optimization</topic><topic>Descent</topic><topic>Filtering algorithms</topic><topic>Finite impulse response filter</topic><topic>Impulse response</topic><topic>Large-scale systems</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanna, A.I.</creatorcontrib><creatorcontrib>Mandic, D.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanna, A.I.</au><au>Mandic, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear FIR adaptive filters with a gradient adaptive amplitude in the nonlinearity</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2002-08-01</date><risdate>2002</risdate><volume>9</volume><issue>8</issue><spage>253</spage><epage>255</epage><pages>253-255</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>A nonlinear gradient descent (NGD) learning algorithm with an adaptive amplitude of the nonlinearity is derived for the class of nonlinear finite impulse response (FIR) adaptive filters (dynamical perceptron). This is based on the adaptive amplitude backpropagation (AABP) algorithm for large-scale neural networks. The amplitude of the nonlinear activation function is made gradient adaptive to give the adaptive amplitude nonlinear gradient descent (AANGD) algorithm, making the AANGD suitable for processing nonlinear and nonstationary input signals with a large dynamical range. Experimental results show the AANGD algorithm outperforming the standard NGD algorithm on both colored and nonlinear input with large dynamics. Despite its simplicity, the considered algorithm proves suitable for adaptive filtering of nonlinear and nonstationary signals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2002.803001</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2002-08, Vol.9 (8), p.253-255
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_884359019
source IEEE Electronic Library (IEL) Journals
subjects Adaptive algorithms
Adaptive filters
Algorithms
Amplitudes
Backpropagation algorithms
Biomedical signal processing
Constraint optimization
Descent
Filtering algorithms
Finite impulse response filter
Impulse response
Large-scale systems
Neural networks
Nonlinearity
Signal processing
Signal processing algorithms
title Nonlinear FIR adaptive filters with a gradient adaptive amplitude in the nonlinearity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20FIR%20adaptive%20filters%20with%20a%20gradient%20adaptive%20amplitude%20in%20the%20nonlinearity&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Hanna,%20A.I.&rft.date=2002-08-01&rft.volume=9&rft.issue=8&rft.spage=253&rft.epage=255&rft.pages=253-255&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2002.803001&rft_dat=%3Cproquest_ieee_%3E1671380579%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-eca8e312f9a03e9199e1aa36cf08c424b5be9ea5d3f8b3144238aa4c036c0e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884359019&rft_id=info:pmid/&rft_ieee_id=1034991&rfr_iscdi=true