Loading…
Modeling of simultaneous switching noise in high speed systems
Simultaneous switching noise (SSN) has become a major bottleneck in high speed digital design. For future systems, modeling SSN can be complex: due to the thousands of interconnects that need to be analyzed. This is because a system level modeling approach is necessary that combines the chip, packag...
Saved in:
Published in: | IEEE transactions on advanced packaging 2001-05, Vol.24 (2), p.132-142 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Simultaneous switching noise (SSN) has become a major bottleneck in high speed digital design. For future systems, modeling SSN can be complex: due to the thousands of interconnects that need to be analyzed. This is because a system level modeling approach is necessary that combines the chip, package and board level interactions. This paper presents an efficient method to model the SSN for high speed systems by developing circuit models for the planes and interconnections that can be combined using superposition theory. This approximation is valid at frequencies where skin effect is dominant. Simulation results are compared with the measurements on a test vehicle, verifying the validity of the method. In addition a system has been simulated to compute SSN, showing the application of this method for complex systems. |
---|---|
ISSN: | 1521-3323 1557-9980 |
DOI: | 10.1109/6040.928747 |