Loading…

Simple mechanical control systems with constraints

We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2000-08, Vol.45 (8), p.1420-1436
Main Author: Lewis, A.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173
cites cdi_FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173
container_end_page 1436
container_issue 8
container_start_page 1420
container_title IEEE transactions on automatic control
container_volume 45
creator Lewis, A.D.
description We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the methods may be applied. The bulk of this paper is devoted to a detailed analysis of some examples of nonholonomic mechanical control systems. We look at the Heisenberg system, the upright rolling disk, the roller racer, and the snakeboard.
doi_str_mv 10.1109/9.871752
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_884832443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>871752</ieee_id><sourcerecordid>914657407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173</originalsourceid><addsrcrecordid>eNqF0UtLAzEQAOAgCtYqePZUPKiXrclkkk2OUnxBwYN6DmmapVv2UZMt0n9vli0ePFhyGJL5GGYyhFwyOmWM6ns9VTnLBRyRERNCZSCAH5MRpUxlGpQ8JWcxrtNVIrIRgfey3lR-Unu3sk3pbDVxbdOFtprEXex8HSffZbfqH2MXbNl08ZycFLaK_mIfx-Tz6fFj9pLN355fZw_zzCGnXSZZsYB0ir4NT61HZwVaFForUaC2qoAl5BwWVi2Vk1BozqleSMwRNcv5mNwOdTeh_dr62Jm6jM5XlW18u41GM5QiR9rLm38laCqAcTgMlQSRih6GudRpLpng9R-4brehSf9ilELFAZEndDcgF9oYgy_MJpS1DTvDqOm3ZrQZtpbo1UBL7_0v2yd_AI5xjy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884832443</pqid></control><display><type>article</type><title>Simple mechanical control systems with constraints</title><source>IEEE Xplore (Online service)</source><creator>Lewis, A.D.</creator><creatorcontrib>Lewis, A.D.</creatorcontrib><description>We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the methods may be applied. The bulk of this paper is devoted to a detailed analysis of some examples of nonholonomic mechanical control systems. We look at the Heisenberg system, the upright rolling disk, the roller racer, and the snakeboard.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.871752</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Automatic control ; Constraint theory ; Control systems ; Controllability ; Disks ; Equations ; Joints ; Kinetic energy ; Lagrangian functions ; Mechanical control systems ; Mechanical systems ; Potential energy ; Rollers ; Velocity control</subject><ispartof>IEEE transactions on automatic control, 2000-08, Vol.45 (8), p.1420-1436</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173</citedby><cites>FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/871752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lewis, A.D.</creatorcontrib><title>Simple mechanical control systems with constraints</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the methods may be applied. The bulk of this paper is devoted to a detailed analysis of some examples of nonholonomic mechanical control systems. We look at the Heisenberg system, the upright rolling disk, the roller racer, and the snakeboard.</description><subject>Algebra</subject><subject>Automatic control</subject><subject>Constraint theory</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Disks</subject><subject>Equations</subject><subject>Joints</subject><subject>Kinetic energy</subject><subject>Lagrangian functions</subject><subject>Mechanical control systems</subject><subject>Mechanical systems</subject><subject>Potential energy</subject><subject>Rollers</subject><subject>Velocity control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLAzEQAOAgCtYqePZUPKiXrclkkk2OUnxBwYN6DmmapVv2UZMt0n9vli0ePFhyGJL5GGYyhFwyOmWM6ns9VTnLBRyRERNCZSCAH5MRpUxlGpQ8JWcxrtNVIrIRgfey3lR-Unu3sk3pbDVxbdOFtprEXex8HSffZbfqH2MXbNl08ZycFLaK_mIfx-Tz6fFj9pLN355fZw_zzCGnXSZZsYB0ir4NT61HZwVaFForUaC2qoAl5BwWVi2Vk1BozqleSMwRNcv5mNwOdTeh_dr62Jm6jM5XlW18u41GM5QiR9rLm38laCqAcTgMlQSRih6GudRpLpng9R-4brehSf9ilELFAZEndDcgF9oYgy_MJpS1DTvDqOm3ZrQZtpbo1UBL7_0v2yd_AI5xjy0</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Lewis, A.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20000801</creationdate><title>Simple mechanical control systems with constraints</title><author>Lewis, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algebra</topic><topic>Automatic control</topic><topic>Constraint theory</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Disks</topic><topic>Equations</topic><topic>Joints</topic><topic>Kinetic energy</topic><topic>Lagrangian functions</topic><topic>Mechanical control systems</topic><topic>Mechanical systems</topic><topic>Potential energy</topic><topic>Rollers</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, A.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple mechanical control systems with constraints</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2000-08-01</date><risdate>2000</risdate><volume>45</volume><issue>8</issue><spage>1420</spage><epage>1436</epage><pages>1420-1436</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the methods may be applied. The bulk of this paper is devoted to a detailed analysis of some examples of nonholonomic mechanical control systems. We look at the Heisenberg system, the upright rolling disk, the roller racer, and the snakeboard.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/9.871752</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2000-08, Vol.45 (8), p.1420-1436
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_884832443
source IEEE Xplore (Online service)
subjects Algebra
Automatic control
Constraint theory
Control systems
Controllability
Disks
Equations
Joints
Kinetic energy
Lagrangian functions
Mechanical control systems
Mechanical systems
Potential energy
Rollers
Velocity control
title Simple mechanical control systems with constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20mechanical%20control%20systems%20with%20constraints&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lewis,%20A.D.&rft.date=2000-08-01&rft.volume=45&rft.issue=8&rft.spage=1420&rft.epage=1436&rft.pages=1420-1436&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.871752&rft_dat=%3Cproquest_cross%3E914657407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884832443&rft_id=info:pmid/&rft_ieee_id=871752&rfr_iscdi=true