Loading…
Simple mechanical control systems with constraints
We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the...
Saved in:
Published in: | IEEE transactions on automatic control 2000-08, Vol.45 (8), p.1420-1436 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173 |
container_end_page | 1436 |
container_issue | 8 |
container_start_page | 1420 |
container_title | IEEE transactions on automatic control |
container_volume | 45 |
creator | Lewis, A.D. |
description | We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the methods may be applied. The bulk of this paper is devoted to a detailed analysis of some examples of nonholonomic mechanical control systems. We look at the Heisenberg system, the upright rolling disk, the roller racer, and the snakeboard. |
doi_str_mv | 10.1109/9.871752 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_884832443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>871752</ieee_id><sourcerecordid>914657407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173</originalsourceid><addsrcrecordid>eNqF0UtLAzEQAOAgCtYqePZUPKiXrclkkk2OUnxBwYN6DmmapVv2UZMt0n9vli0ePFhyGJL5GGYyhFwyOmWM6ns9VTnLBRyRERNCZSCAH5MRpUxlGpQ8JWcxrtNVIrIRgfey3lR-Unu3sk3pbDVxbdOFtprEXex8HSffZbfqH2MXbNl08ZycFLaK_mIfx-Tz6fFj9pLN355fZw_zzCGnXSZZsYB0ir4NT61HZwVaFForUaC2qoAl5BwWVi2Vk1BozqleSMwRNcv5mNwOdTeh_dr62Jm6jM5XlW18u41GM5QiR9rLm38laCqAcTgMlQSRih6GudRpLpng9R-4brehSf9ilELFAZEndDcgF9oYgy_MJpS1DTvDqOm3ZrQZtpbo1UBL7_0v2yd_AI5xjy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884832443</pqid></control><display><type>article</type><title>Simple mechanical control systems with constraints</title><source>IEEE Xplore (Online service)</source><creator>Lewis, A.D.</creator><creatorcontrib>Lewis, A.D.</creatorcontrib><description>We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the methods may be applied. The bulk of this paper is devoted to a detailed analysis of some examples of nonholonomic mechanical control systems. We look at the Heisenberg system, the upright rolling disk, the roller racer, and the snakeboard.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.871752</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Automatic control ; Constraint theory ; Control systems ; Controllability ; Disks ; Equations ; Joints ; Kinetic energy ; Lagrangian functions ; Mechanical control systems ; Mechanical systems ; Potential energy ; Rollers ; Velocity control</subject><ispartof>IEEE transactions on automatic control, 2000-08, Vol.45 (8), p.1420-1436</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173</citedby><cites>FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/871752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lewis, A.D.</creatorcontrib><title>Simple mechanical control systems with constraints</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the methods may be applied. The bulk of this paper is devoted to a detailed analysis of some examples of nonholonomic mechanical control systems. We look at the Heisenberg system, the upright rolling disk, the roller racer, and the snakeboard.</description><subject>Algebra</subject><subject>Automatic control</subject><subject>Constraint theory</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Disks</subject><subject>Equations</subject><subject>Joints</subject><subject>Kinetic energy</subject><subject>Lagrangian functions</subject><subject>Mechanical control systems</subject><subject>Mechanical systems</subject><subject>Potential energy</subject><subject>Rollers</subject><subject>Velocity control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLAzEQAOAgCtYqePZUPKiXrclkkk2OUnxBwYN6DmmapVv2UZMt0n9vli0ePFhyGJL5GGYyhFwyOmWM6ns9VTnLBRyRERNCZSCAH5MRpUxlGpQ8JWcxrtNVIrIRgfey3lR-Unu3sk3pbDVxbdOFtprEXex8HSffZbfqH2MXbNl08ZycFLaK_mIfx-Tz6fFj9pLN355fZw_zzCGnXSZZsYB0ir4NT61HZwVaFForUaC2qoAl5BwWVi2Vk1BozqleSMwRNcv5mNwOdTeh_dr62Jm6jM5XlW18u41GM5QiR9rLm38laCqAcTgMlQSRih6GudRpLpng9R-4brehSf9ilELFAZEndDcgF9oYgy_MJpS1DTvDqOm3ZrQZtpbo1UBL7_0v2yd_AI5xjy0</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Lewis, A.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20000801</creationdate><title>Simple mechanical control systems with constraints</title><author>Lewis, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algebra</topic><topic>Automatic control</topic><topic>Constraint theory</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Disks</topic><topic>Equations</topic><topic>Joints</topic><topic>Kinetic energy</topic><topic>Lagrangian functions</topic><topic>Mechanical control systems</topic><topic>Mechanical systems</topic><topic>Potential energy</topic><topic>Rollers</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, A.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple mechanical control systems with constraints</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2000-08-01</date><risdate>2000</risdate><volume>45</volume><issue>8</issue><spage>1420</spage><epage>1436</epage><pages>1420-1436</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We apply some recently developed control theoretic techniques to the analysis of a class of mechanical systems with constraints. Certain simple aspects of the theory of affine connections play an important part in our presentation. The necessary background is presented in order to illustrate how the methods may be applied. The bulk of this paper is devoted to a detailed analysis of some examples of nonholonomic mechanical control systems. We look at the Heisenberg system, the upright rolling disk, the roller racer, and the snakeboard.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/9.871752</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2000-08, Vol.45 (8), p.1420-1436 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_884832443 |
source | IEEE Xplore (Online service) |
subjects | Algebra Automatic control Constraint theory Control systems Controllability Disks Equations Joints Kinetic energy Lagrangian functions Mechanical control systems Mechanical systems Potential energy Rollers Velocity control |
title | Simple mechanical control systems with constraints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20mechanical%20control%20systems%20with%20constraints&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lewis,%20A.D.&rft.date=2000-08-01&rft.volume=45&rft.issue=8&rft.spage=1420&rft.epage=1436&rft.pages=1420-1436&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.871752&rft_dat=%3Cproquest_cross%3E914657407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-61fb2b2bf1558e0ae4ca54a459985f49a8f2d2732ba8d8c62f93309b647449173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884832443&rft_id=info:pmid/&rft_ieee_id=871752&rfr_iscdi=true |