Loading…
A Bayesian approach to robust adaptive beamforming
An adaptive beamformer that is robust to uncertainty in source direction-of-arrival (DOA) is derived using a Bayesian approach. The DOA is assumed to be a discrete random variable with a known a priori probability density function (PDF) that reflects the level of uncertainty in the source DOA. The r...
Saved in:
Published in: | IEEE transactions on signal processing 2000-02, Vol.48 (2), p.386-398 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An adaptive beamformer that is robust to uncertainty in source direction-of-arrival (DOA) is derived using a Bayesian approach. The DOA is assumed to be a discrete random variable with a known a priori probability density function (PDF) that reflects the level of uncertainty in the source DOA. The resulting beamformer is a weighted sum of minimum variance distortionless response (MVDR) beamformers pointed at a set of candidate DOAs, where the relative contribution of each MVDR beamformer is determined from the a posteriori PDF of the DOA conditioned on previously observed data. A simple approximation to the a posteriori PDF results in a straightforward implementation. Performance of the approximate Bayesian beamformer is compared with linearly constrained minimum variance (LCMV) beamformers and data-driven approaches that attempt to estimate signal characteristics or the steering vector from the data. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.823966 |