Loading…
Ultrafast photoconductive self-switching of subpicosecond electrical pulses
A novel photoconductive switch is proposed. The geometry of this ultrafast switch allows the rising edge of an ultrashort optical pulse to both turn on and turn off a terahertz electrical transient, making the device independent of the substrate material and charge carrier lifetime. A lumped-element...
Saved in:
Published in: | IEEE journal of quantum electronics 2000-02, Vol.36 (2), p.130-136 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel photoconductive switch is proposed. The geometry of this ultrafast switch allows the rising edge of an ultrashort optical pulse to both turn on and turn off a terahertz electrical transient, making the device independent of the substrate material and charge carrier lifetime. A lumped-element model is used to analyze the operation of the switch. The model employed describes the photoexcitation of both a microstrip photoconductive switch layout and a coplanar photoconductive switch layout. It is found that both of the layouts are capable of achieving subpicosecond switching, with the coplanar layout offering greater ease of fabrication and device tunability. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/3.823456 |