Loading…

Raman lidar calibration for the DMSP SSM/T-2 microwave water vapor sensor

Campaigns were conducted at the Pacific Missile Range Facility, Barking Sands, Kauai, investigating Raman lidar as a method to improve calibration of the DMSP SSM/T-2 microwave water vapor profiling instrument. Lidar mixing ratios were calibrated against AIR and Vaisala radiosondes and the calibrati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2000-01, Vol.38 (1), p.141-154
Main Authors: Wessel, J., Beck, S.M., Chan, Y.C., Farley, R.W., Gelbwachs, J.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Campaigns were conducted at the Pacific Missile Range Facility, Barking Sands, Kauai, investigating Raman lidar as a method to improve calibration of the DMSP SSM/T-2 microwave water vapor profiling instrument. Lidar mixing ratios were calibrated against AIR and Vaisala radiosondes and the calibration was tested in the vicinity of clouds. Above 6 km, radiosondes reported anomalously low relative humidity in the vicinity of clouds. Lidar measurements were confirmed by using an electro-optical shutter, which provided correct measurement of relative humidity at cloud bases above 6 km. Radiative transfer calculations applied to the lidar data closely matched signals observed in the SSM/T-2 atmospheric channels. Forward calculations for surface sensitive channels disagreed with SSM/T-2 and SSM/I observations. Fine scale surface roughness and localized orographic drying are tentatively suggested as explanations. Cloud effects were ruled out as a significant source of discrepancy.
ISSN:0196-2892
1558-0644
DOI:10.1109/36.823908