Loading…
Raman lidar calibration for the DMSP SSM/T-2 microwave water vapor sensor
Campaigns were conducted at the Pacific Missile Range Facility, Barking Sands, Kauai, investigating Raman lidar as a method to improve calibration of the DMSP SSM/T-2 microwave water vapor profiling instrument. Lidar mixing ratios were calibrated against AIR and Vaisala radiosondes and the calibrati...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2000-01, Vol.38 (1), p.141-154 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Campaigns were conducted at the Pacific Missile Range Facility, Barking Sands, Kauai, investigating Raman lidar as a method to improve calibration of the DMSP SSM/T-2 microwave water vapor profiling instrument. Lidar mixing ratios were calibrated against AIR and Vaisala radiosondes and the calibration was tested in the vicinity of clouds. Above 6 km, radiosondes reported anomalously low relative humidity in the vicinity of clouds. Lidar measurements were confirmed by using an electro-optical shutter, which provided correct measurement of relative humidity at cloud bases above 6 km. Radiative transfer calculations applied to the lidar data closely matched signals observed in the SSM/T-2 atmospheric channels. Forward calculations for surface sensitive channels disagreed with SSM/T-2 and SSM/I observations. Fine scale surface roughness and localized orographic drying are tentatively suggested as explanations. Cloud effects were ruled out as a significant source of discrepancy. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/36.823908 |