Loading…
Mathematical models for capacitated multi-level production planning problems with linked lot sizes
Various mixed-integer programming models have been proposed for solving the capacitated multi-level lot sizing problem with linked lot sizes. It would be of value for researchers and practitioners to know which of these models is the most efficient under different circumstances. To investigate the c...
Saved in:
Published in: | International journal of production research 2011-10, Vol.49 (20), p.6227-6247 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-d711685f260b82cc89433da5bd47e6713d123e8c0ddd1bfaa3704084d4667cb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-d711685f260b82cc89433da5bd47e6713d123e8c0ddd1bfaa3704084d4667cb23 |
container_end_page | 6247 |
container_issue | 20 |
container_start_page | 6227 |
container_title | International journal of production research |
container_volume | 49 |
creator | Wu, Tao Shi, Leyuan |
description | Various mixed-integer programming models have been proposed for solving the capacitated multi-level lot sizing problem with linked lot sizes. It would be of value for researchers and practitioners to know which of these models is the most efficient under different circumstances. To investigate the comparative efficiencies associated with these models, this paper therefore demonstrates theoretically the relationships between these models when the integrality requirement is relaxed for any subset of binary setup and setup-carryover variables, shows the relative effectiveness of these models in obtaining lower bound solutions associated with linear programming relaxations, and evaluates the relative computational resources and the time needed when using these models through intensive computational tests. These theoretical and numerical results are expected to provide significant guidelines for choosing an effective formulation for different situations. |
doi_str_mv | 10.1080/00207543.2010.535043 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_886169472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439315451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-d711685f260b82cc89433da5bd47e6713d123e8c0ddd1bfaa3704084d4667cb23</originalsourceid><addsrcrecordid>eNp9kE1LHTEUhkOx0Ott_0EXoVBcjeZ7MqsiYlWwdKPgLmSSTG9sZnKbZJTrr2-Gqy5cmM2Bw_OevDwAfMXoGCOJThAiqOWMHhNUV5xyxOgHsMJUiIZLeXcAVgvSLMwncJjzPaqPS7YC_S9dNm7UxRsd4BitCxkOMUGjt9r4oouzcJxD8U1wDy7AbYp2NsXHCW6DniY__Vl2fXBjho--bGDw098aCrHA7J9c_gw-Djpk9-V5rsHtz_Obs8vm-vfF1dnpdWNoJ0pjW4yF5AMRqJfEGNkxSq3mvWWtEy2mFhPqpEHWWtwPWtMWMSSZZUK0pid0DY72d2udf7PLRY0-GxdqSxfnrDoiKJaCdJX89oa8j3OaajklpcCiY-1yju0hk2LOyQ1qm_yo005hpBbt6kW7WrSrvfYa-_58W-eqdEh6Mj6_ZgnjLeEUV-7HnvNT1T3qx5iCVUXvQkwvIfruT_8BYU6WjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>886169472</pqid></control><display><type>article</type><title>Mathematical models for capacitated multi-level production planning problems with linked lot sizes</title><source>Taylor and Francis Science and Technology Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Wu, Tao ; Shi, Leyuan</creator><creatorcontrib>Wu, Tao ; Shi, Leyuan</creatorcontrib><description>Various mixed-integer programming models have been proposed for solving the capacitated multi-level lot sizing problem with linked lot sizes. It would be of value for researchers and practitioners to know which of these models is the most efficient under different circumstances. To investigate the comparative efficiencies associated with these models, this paper therefore demonstrates theoretically the relationships between these models when the integrality requirement is relaxed for any subset of binary setup and setup-carryover variables, shows the relative effectiveness of these models in obtaining lower bound solutions associated with linear programming relaxations, and evaluates the relative computational resources and the time needed when using these models through intensive computational tests. These theoretical and numerical results are expected to provide significant guidelines for choosing an effective formulation for different situations.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2010.535043</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Group</publisher><subject>Applied sciences ; Computation ; Correlation analysis ; Exact sciences and technology ; Guidelines ; Integer programming ; Inventory control, production control. Distribution ; Linear programming ; Lot sizing ; Lower bounds ; Mathematical analysis ; Mathematical models ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; optimisation ; Production planning ; Programming ; Studies</subject><ispartof>International journal of production research, 2011-10, Vol.49 (20), p.6227-6247</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-d711685f260b82cc89433da5bd47e6713d123e8c0ddd1bfaa3704084d4667cb23</citedby><cites>FETCH-LOGICAL-c396t-d711685f260b82cc89433da5bd47e6713d123e8c0ddd1bfaa3704084d4667cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24572531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Shi, Leyuan</creatorcontrib><title>Mathematical models for capacitated multi-level production planning problems with linked lot sizes</title><title>International journal of production research</title><description>Various mixed-integer programming models have been proposed for solving the capacitated multi-level lot sizing problem with linked lot sizes. It would be of value for researchers and practitioners to know which of these models is the most efficient under different circumstances. To investigate the comparative efficiencies associated with these models, this paper therefore demonstrates theoretically the relationships between these models when the integrality requirement is relaxed for any subset of binary setup and setup-carryover variables, shows the relative effectiveness of these models in obtaining lower bound solutions associated with linear programming relaxations, and evaluates the relative computational resources and the time needed when using these models through intensive computational tests. These theoretical and numerical results are expected to provide significant guidelines for choosing an effective formulation for different situations.</description><subject>Applied sciences</subject><subject>Computation</subject><subject>Correlation analysis</subject><subject>Exact sciences and technology</subject><subject>Guidelines</subject><subject>Integer programming</subject><subject>Inventory control, production control. Distribution</subject><subject>Linear programming</subject><subject>Lot sizing</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>optimisation</subject><subject>Production planning</subject><subject>Programming</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LHTEUhkOx0Ott_0EXoVBcjeZ7MqsiYlWwdKPgLmSSTG9sZnKbZJTrr2-Gqy5cmM2Bw_OevDwAfMXoGCOJThAiqOWMHhNUV5xyxOgHsMJUiIZLeXcAVgvSLMwncJjzPaqPS7YC_S9dNm7UxRsd4BitCxkOMUGjt9r4oouzcJxD8U1wDy7AbYp2NsXHCW6DniY__Vl2fXBjho--bGDw098aCrHA7J9c_gw-Djpk9-V5rsHtz_Obs8vm-vfF1dnpdWNoJ0pjW4yF5AMRqJfEGNkxSq3mvWWtEy2mFhPqpEHWWtwPWtMWMSSZZUK0pid0DY72d2udf7PLRY0-GxdqSxfnrDoiKJaCdJX89oa8j3OaajklpcCiY-1yju0hk2LOyQ1qm_yo005hpBbt6kW7WrSrvfYa-_58W-eqdEh6Mj6_ZgnjLeEUV-7HnvNT1T3qx5iCVUXvQkwvIfruT_8BYU6WjQ</recordid><startdate>20111015</startdate><enddate>20111015</enddate><creator>Wu, Tao</creator><creator>Shi, Leyuan</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111015</creationdate><title>Mathematical models for capacitated multi-level production planning problems with linked lot sizes</title><author>Wu, Tao ; Shi, Leyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-d711685f260b82cc89433da5bd47e6713d123e8c0ddd1bfaa3704084d4667cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computation</topic><topic>Correlation analysis</topic><topic>Exact sciences and technology</topic><topic>Guidelines</topic><topic>Integer programming</topic><topic>Inventory control, production control. Distribution</topic><topic>Linear programming</topic><topic>Lot sizing</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>optimisation</topic><topic>Production planning</topic><topic>Programming</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Shi, Leyuan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tao</au><au>Shi, Leyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical models for capacitated multi-level production planning problems with linked lot sizes</atitle><jtitle>International journal of production research</jtitle><date>2011-10-15</date><risdate>2011</risdate><volume>49</volume><issue>20</issue><spage>6227</spage><epage>6247</epage><pages>6227-6247</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>Various mixed-integer programming models have been proposed for solving the capacitated multi-level lot sizing problem with linked lot sizes. It would be of value for researchers and practitioners to know which of these models is the most efficient under different circumstances. To investigate the comparative efficiencies associated with these models, this paper therefore demonstrates theoretically the relationships between these models when the integrality requirement is relaxed for any subset of binary setup and setup-carryover variables, shows the relative effectiveness of these models in obtaining lower bound solutions associated with linear programming relaxations, and evaluates the relative computational resources and the time needed when using these models through intensive computational tests. These theoretical and numerical results are expected to provide significant guidelines for choosing an effective formulation for different situations.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00207543.2010.535043</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2011-10, Vol.49 (20), p.6227-6247 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_journals_886169472 |
source | Taylor and Francis Science and Technology Collection; BSC - Ebsco (Business Source Ultimate) |
subjects | Applied sciences Computation Correlation analysis Exact sciences and technology Guidelines Integer programming Inventory control, production control. Distribution Linear programming Lot sizing Lower bounds Mathematical analysis Mathematical models Mathematical programming Operational research and scientific management Operational research. Management science optimisation Production planning Programming Studies |
title | Mathematical models for capacitated multi-level production planning problems with linked lot sizes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20models%20for%20capacitated%20multi-level%20production%20planning%20problems%20with%20linked%20lot%20sizes&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Wu,%20Tao&rft.date=2011-10-15&rft.volume=49&rft.issue=20&rft.spage=6227&rft.epage=6247&rft.pages=6227-6247&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207543.2010.535043&rft_dat=%3Cproquest_cross%3E2439315451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-d711685f260b82cc89433da5bd47e6713d123e8c0ddd1bfaa3704084d4667cb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=886169472&rft_id=info:pmid/&rfr_iscdi=true |