Loading…

Global Learning Position Controls for Permanent-Magnet Step Motors

Permanent-magnet step motors offer several advantages such as high efficiency, high power density, high torque-to-inertia ratio, and excellent durability and serviceability, as well as the absence of external rotor excitation and windings. The nonuniformity in the developed torque due to the nonsinu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2011-10, Vol.58 (10), p.4654-4663
Main Authors: Bifaretti, S., Iacovone, V., Rocchi, A., Tomei, P., Verrelli, C. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Permanent-magnet step motors offer several advantages such as high efficiency, high power density, high torque-to-inertia ratio, and excellent durability and serviceability, as well as the absence of external rotor excitation and windings. The nonuniformity in the developed torque due to the nonsinusoidal flux distribution in the airgap is, however, the major obstacle in achieving global high-precision position tracking. When the position reference profile is a periodic signal of known period, such an obstacle may be however overcome by using recent learning control techniques, which require neither high gains in the inner speed/position control loops nor resetting procedures. An experimental comparison of two different recently designed learning position controls ("adaptive" and "iterative") is, for the first time, carried out with reference to the same low-speed robotic application. Benefits and drawbacks of the two learning approaches are analyzed in detail.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2011.2114314