Loading…

Optimal Operation of Distribution Feeders in Smart Grids

This paper presents a generic and comprehensive distribution optimal power flow (DOPF) model that can be used by local distribution companies (LDCs) to integrate their distribution system feeders into a Smart Grid. The proposed three-phase DOPF framework incorporates detailed modeling of distributio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2011-10, Vol.58 (10), p.4495-4503
Main Authors: Paudyal, S., Canizares, C. A., Bhattacharya, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a generic and comprehensive distribution optimal power flow (DOPF) model that can be used by local distribution companies (LDCs) to integrate their distribution system feeders into a Smart Grid. The proposed three-phase DOPF framework incorporates detailed modeling of distribution system components and considers various operating objectives. Phase specific and voltage dependent modeling of customer loads in the three-phase DOPF model allows LDC operators to determine realistic operating strategies that can improve the overall feeder efficiency. The proposed distribution system operation objective is based on the minimization of the energy drawn from the substation while seeking to minimize the number of switching operations of load tap changers and capacitors. A novel method for solving the three-phase DOPF model by transforming the mixed-integer nonlinear programming problem to a nonlinear programming problem is proposed which reduces the computational burden and facilitates its practical implementation and application. Two practical case studies, including a real distribution feeder test case, are presented to demonstrate the features of the proposed methodology. The results illustrate the benefits of the proposed DOPF in terms of reducing energy losses while limiting the number of switching operations.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2011.2112314