Loading…

Estimation of relationships between mineral concentration and fatty acid composition of longissimus muscle and beef palatability traits1

The objective of this study was to determine the influence of beef LM nutrient components on beef palatability traits and evaluate the impact of USDA quality grade on beef palatability. Longissimus muscle samples from related Angus cattle (n = 1,737) were obtained and fabricated into steaks for trai...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science 2011-09, Vol.89 (9), p.2849-2858
Main Authors: Garmyn, A. J., Hilton, G. G., Mateescu, R. G., Morgan, J. B., Reecy, J. M., Tait, R. G., Beitz, D. C., Duan, Q., Schoonmaker, J. P., Mayes, M. S., Drewnoski, M. E., Liu, Q., VanOverbeke, D. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to determine the influence of beef LM nutrient components on beef palatability traits and evaluate the impact of USDA quality grade on beef palatability. Longissimus muscle samples from related Angus cattle (n = 1,737) were obtained and fabricated into steaks for trained sensory panel, Warner-Bratzler shear force (WBSF), lipid oxidation measured by thiobarbituric acid reactive substances (TBARS), fatty acid, and mineral composition analysis. Pearson phenotypic correlations were obtained by the correlation procedure of SAS. Beef palatability data were analyzed by the GLM procedure of SAS with USDA quality grade as the main effect. Specific mineral concentrations did not demonstrate strong correlations with WBSF or sensory traits (r = -0.14 to 0.16). However, minerals appeared to have a stronger relationship with flavor; all minerals evaluated except Ca and Mn were positively correlated (P < 0.05) with beef flavor. Stearic acid (C18:0), C18:2, C20:4, and PUFA were negatively correlated (P < 0.05) with all 3 panelist tenderness traits (r = -0.09 to -0.22) and were positively correlated (P < 0.05) with WBSF (r = 0.09 to 0.15). The MUFA were positively correlated (P < 0.05) with panelist tenderness ratings (r = 0.07 to 0.10) and negatively associated (P < 0.05) with WBSF (r = -0.11). The strongest correlations with juiciness were negative relationships (P < 0.05) with C18:2, C18:3, C20:4. and PUFA (r = -0.08 to -0.20). Correlations with beef flavor were weak, but the strongest was a positive relationship with MUFA (r = 0.13). Quality grade affected (P < 0.05) WBSF, TBARS, and all trained sensory panel traits, except livery/metallic flavor. As quality grade increased, steaks were more tender (P < 0.05), as evidenced by both WBSF and sensory panel tenderness ratings. Prime steaks were rated jniciest (P < 0.05) by panelists, whereas Select and Low Choice were similarly rated below Top Choice for sustained juiciness. Quality grade influenced (P < 0.05) beef flavor, hut not in a linear fashion. Although there were significant correlations, these results indicate tenderness, juiciness, and flavor are not strongly influenced by individual nutrient components in beef LM. Furthermore, the positive linear relationships between USDA quality grade and beef palatability traits suggest quality grade is still one of the most valuable tools available to predict beef tenderness. [PUBLICATION ABSTRACT]
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2010-3497