Loading…

A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks

The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics 2011-09, Vol.116 (A9), p.n/a
Main Authors: Newman, P. R., Ellacott, S. W., Wilkinson, W. P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303
cites
container_end_page n/a
container_issue A9
container_start_page
container_title Journal of Geophysical Research: Space Physics
container_volume 116
creator Newman, P. R.
Ellacott, S. W.
Wilkinson, W. P.
description The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solution to Liouville's equation as a function of six invariants, finding forms of these invariants in terms of the upstream parameters. The ion distribution is expressed as a function of one of these invariants, subject to a Maxwellian upstream boundary condition, and the evolution of the distribution through and downstream of the shock is studied. The momentum‐space volume within surfaces of constant probability (related to the temperature) is shown to be inversely proportional to an average value of the canonical momentum associated with motion in the direction normal to the shock plane, generalizing a previous result to three‐dimensional phase space. We also study the evolution of the distribution properties numerically, in particular noting that the “twisting” of these surfaces in phase space is the result of the unequal guiding center motion of different parts of the distribution (which is not the case for a fully perpendicular shock). This property provides insight into the damping of oscillations in the mean momentum and the temperature for a quasi‐perpendicular model (as the distribution is spread about the central value through gyration) and the observed T⊥ > T∥ anisotropy. Key Points Solution to Liouville equation for distribution at a low Mach quasi‐perp shock Evolution of dist. properties through shock studied via invariant solutions Key features of heating incl. anisotropy studied supported with numerical model
doi_str_mv 10.1029/2011JA016529
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_890611295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457974481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKo3f0Dwvppkd7ObYxGtllZFKj2GJJ2l0disyW5rf4F_22hFnMtjhve9gYfQGSUXlDBxyQilkxGhvGTiAA0YLXnGGGGHaEBoUWeEseoYncb4QtIUJS8IHaDPEY6d6mzsrFEOt6tdtCbiFkJswXR2A9ivcbcCDBvv-s6mzTf4W5YJClb_3CJWJvgYsfNbPFNmhdf9m4aA33sVbZbiWlgvremdCth452xMlINExJU3r_EEHTXKRTj91SF6vrmeX91m04fx3dVompmcVEUmGkIoiIJyLnRFQRutl7zRhqla8bxOJ8ZYU0GuiS5pIaDWTQNQmbJhNCf5EJ3vc9vg33uInXzxfVinl7IWhFPKRJlM-d60tQ52sg32TYWdpER-Ny3_Ny0n46cRS1SRqGxPpV7g449S4VXyKq9Kubgfy_nscSGmT1NZ51_PIYVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890611295</pqid></control><display><type>article</type><title>A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Newman, P. R. ; Ellacott, S. W. ; Wilkinson, W. P.</creator><creatorcontrib>Newman, P. R. ; Ellacott, S. W. ; Wilkinson, W. P.</creatorcontrib><description>The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solution to Liouville's equation as a function of six invariants, finding forms of these invariants in terms of the upstream parameters. The ion distribution is expressed as a function of one of these invariants, subject to a Maxwellian upstream boundary condition, and the evolution of the distribution through and downstream of the shock is studied. The momentum‐space volume within surfaces of constant probability (related to the temperature) is shown to be inversely proportional to an average value of the canonical momentum associated with motion in the direction normal to the shock plane, generalizing a previous result to three‐dimensional phase space. We also study the evolution of the distribution properties numerically, in particular noting that the “twisting” of these surfaces in phase space is the result of the unequal guiding center motion of different parts of the distribution (which is not the case for a fully perpendicular shock). This property provides insight into the damping of oscillations in the mean momentum and the temperature for a quasi‐perpendicular model (as the distribution is spread about the central value through gyration) and the observed T⊥ &gt; T∥ anisotropy. Key Points Solution to Liouville equation for distribution at a low Mach quasi‐perp shock Evolution of dist. properties through shock studied via invariant solutions Key features of heating incl. anisotropy studied supported with numerical model</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2011JA016529</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Astrophysics ; Boundary conditions ; Collisionless shocks ; Earth's bow shock ; Heating ; ion heating ; Liouville's equation ; Mathematical models ; Physics ; Planetology ; solar wind ; Space ; Upstream</subject><ispartof>Journal of Geophysical Research: Space Physics, 2011-09, Vol.116 (A9), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JA016529$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JA016529$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11493,27901,27902,46443,46867</link.rule.ids></links><search><creatorcontrib>Newman, P. R.</creatorcontrib><creatorcontrib>Ellacott, S. W.</creatorcontrib><creatorcontrib>Wilkinson, W. P.</creatorcontrib><title>A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks</title><title>Journal of Geophysical Research: Space Physics</title><addtitle>J. Geophys. Res</addtitle><description>The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solution to Liouville's equation as a function of six invariants, finding forms of these invariants in terms of the upstream parameters. The ion distribution is expressed as a function of one of these invariants, subject to a Maxwellian upstream boundary condition, and the evolution of the distribution through and downstream of the shock is studied. The momentum‐space volume within surfaces of constant probability (related to the temperature) is shown to be inversely proportional to an average value of the canonical momentum associated with motion in the direction normal to the shock plane, generalizing a previous result to three‐dimensional phase space. We also study the evolution of the distribution properties numerically, in particular noting that the “twisting” of these surfaces in phase space is the result of the unequal guiding center motion of different parts of the distribution (which is not the case for a fully perpendicular shock). This property provides insight into the damping of oscillations in the mean momentum and the temperature for a quasi‐perpendicular model (as the distribution is spread about the central value through gyration) and the observed T⊥ &gt; T∥ anisotropy. Key Points Solution to Liouville equation for distribution at a low Mach quasi‐perp shock Evolution of dist. properties through shock studied via invariant solutions Key features of heating incl. anisotropy studied supported with numerical model</description><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Boundary conditions</subject><subject>Collisionless shocks</subject><subject>Earth's bow shock</subject><subject>Heating</subject><subject>ion heating</subject><subject>Liouville's equation</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Planetology</subject><subject>solar wind</subject><subject>Space</subject><subject>Upstream</subject><issn>0148-0227</issn><issn>2169-9380</issn><issn>2156-2202</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWKo3f0Dwvppkd7ObYxGtllZFKj2GJJ2l0disyW5rf4F_22hFnMtjhve9gYfQGSUXlDBxyQilkxGhvGTiAA0YLXnGGGGHaEBoUWeEseoYncb4QtIUJS8IHaDPEY6d6mzsrFEOt6tdtCbiFkJswXR2A9ivcbcCDBvv-s6mzTf4W5YJClb_3CJWJvgYsfNbPFNmhdf9m4aA33sVbZbiWlgvremdCth452xMlINExJU3r_EEHTXKRTj91SF6vrmeX91m04fx3dVompmcVEUmGkIoiIJyLnRFQRutl7zRhqla8bxOJ8ZYU0GuiS5pIaDWTQNQmbJhNCf5EJ3vc9vg33uInXzxfVinl7IWhFPKRJlM-d60tQ52sg32TYWdpER-Ny3_Ny0n46cRS1SRqGxPpV7g449S4VXyKq9Kubgfy_nscSGmT1NZ51_PIYVE</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Newman, P. R.</creator><creator>Ellacott, S. W.</creator><creator>Wilkinson, W. P.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201109</creationdate><title>A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks</title><author>Newman, P. R. ; Ellacott, S. W. ; Wilkinson, W. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Boundary conditions</topic><topic>Collisionless shocks</topic><topic>Earth's bow shock</topic><topic>Heating</topic><topic>ion heating</topic><topic>Liouville's equation</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Planetology</topic><topic>solar wind</topic><topic>Space</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newman, P. R.</creatorcontrib><creatorcontrib>Ellacott, S. W.</creatorcontrib><creatorcontrib>Wilkinson, W. P.</creatorcontrib><collection>Istex</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newman, P. R.</au><au>Ellacott, S. W.</au><au>Wilkinson, W. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks</atitle><jtitle>Journal of Geophysical Research: Space Physics</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-09</date><risdate>2011</risdate><volume>116</volume><issue>A9</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9380</issn><eissn>2156-2202</eissn><eissn>2169-9402</eissn><abstract>The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solution to Liouville's equation as a function of six invariants, finding forms of these invariants in terms of the upstream parameters. The ion distribution is expressed as a function of one of these invariants, subject to a Maxwellian upstream boundary condition, and the evolution of the distribution through and downstream of the shock is studied. The momentum‐space volume within surfaces of constant probability (related to the temperature) is shown to be inversely proportional to an average value of the canonical momentum associated with motion in the direction normal to the shock plane, generalizing a previous result to three‐dimensional phase space. We also study the evolution of the distribution properties numerically, in particular noting that the “twisting” of these surfaces in phase space is the result of the unequal guiding center motion of different parts of the distribution (which is not the case for a fully perpendicular shock). This property provides insight into the damping of oscillations in the mean momentum and the temperature for a quasi‐perpendicular model (as the distribution is spread about the central value through gyration) and the observed T⊥ &gt; T∥ anisotropy. Key Points Solution to Liouville equation for distribution at a low Mach quasi‐perp shock Evolution of dist. properties through shock studied via invariant solutions Key features of heating incl. anisotropy studied supported with numerical model</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JA016529</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Space Physics, 2011-09, Vol.116 (A9), p.n/a
issn 0148-0227
2169-9380
2156-2202
2169-9402
language eng
recordid cdi_proquest_journals_890611295
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); Wiley-Blackwell AGU Digital Library
subjects Anisotropy
Astrophysics
Boundary conditions
Collisionless shocks
Earth's bow shock
Heating
ion heating
Liouville's equation
Mathematical models
Physics
Planetology
solar wind
Space
Upstream
title A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20physics%20perspective%20on%20the%20evolution%20of%20ion%20distributions%20across%20low%20Mach%20number%20quasi-perpendicular%20collisionless%20shocks&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Space%20Physics&rft.au=Newman,%20P.%20R.&rft.date=2011-09&rft.volume=116&rft.issue=A9&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JA016529&rft_dat=%3Cproquest_wiley%3E2457974481%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=890611295&rft_id=info:pmid/&rfr_iscdi=true