Loading…
A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks
The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solu...
Saved in:
Published in: | Journal of Geophysical Research: Space Physics 2011-09, Vol.116 (A9), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303 |
---|---|
cites | |
container_end_page | n/a |
container_issue | A9 |
container_start_page | |
container_title | Journal of Geophysical Research: Space Physics |
container_volume | 116 |
creator | Newman, P. R. Ellacott, S. W. Wilkinson, W. P. |
description | The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solution to Liouville's equation as a function of six invariants, finding forms of these invariants in terms of the upstream parameters. The ion distribution is expressed as a function of one of these invariants, subject to a Maxwellian upstream boundary condition, and the evolution of the distribution through and downstream of the shock is studied. The momentum‐space volume within surfaces of constant probability (related to the temperature) is shown to be inversely proportional to an average value of the canonical momentum associated with motion in the direction normal to the shock plane, generalizing a previous result to three‐dimensional phase space. We also study the evolution of the distribution properties numerically, in particular noting that the “twisting” of these surfaces in phase space is the result of the unequal guiding center motion of different parts of the distribution (which is not the case for a fully perpendicular shock). This property provides insight into the damping of oscillations in the mean momentum and the temperature for a quasi‐perpendicular model (as the distribution is spread about the central value through gyration) and the observed T⊥ > T∥ anisotropy.
Key Points
Solution to Liouville equation for distribution at a low Mach quasi‐perp shock
Evolution of dist. properties through shock studied via invariant solutions
Key features of heating incl. anisotropy studied supported with numerical model |
doi_str_mv | 10.1029/2011JA016529 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_890611295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457974481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKo3f0Dwvppkd7ObYxGtllZFKj2GJJ2l0disyW5rf4F_22hFnMtjhve9gYfQGSUXlDBxyQilkxGhvGTiAA0YLXnGGGGHaEBoUWeEseoYncb4QtIUJS8IHaDPEY6d6mzsrFEOt6tdtCbiFkJswXR2A9ivcbcCDBvv-s6mzTf4W5YJClb_3CJWJvgYsfNbPFNmhdf9m4aA33sVbZbiWlgvremdCth452xMlINExJU3r_EEHTXKRTj91SF6vrmeX91m04fx3dVompmcVEUmGkIoiIJyLnRFQRutl7zRhqla8bxOJ8ZYU0GuiS5pIaDWTQNQmbJhNCf5EJ3vc9vg33uInXzxfVinl7IWhFPKRJlM-d60tQ52sg32TYWdpER-Ny3_Ny0n46cRS1SRqGxPpV7g449S4VXyKq9Kubgfy_nscSGmT1NZ51_PIYVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890611295</pqid></control><display><type>article</type><title>A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Newman, P. R. ; Ellacott, S. W. ; Wilkinson, W. P.</creator><creatorcontrib>Newman, P. R. ; Ellacott, S. W. ; Wilkinson, W. P.</creatorcontrib><description>The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solution to Liouville's equation as a function of six invariants, finding forms of these invariants in terms of the upstream parameters. The ion distribution is expressed as a function of one of these invariants, subject to a Maxwellian upstream boundary condition, and the evolution of the distribution through and downstream of the shock is studied. The momentum‐space volume within surfaces of constant probability (related to the temperature) is shown to be inversely proportional to an average value of the canonical momentum associated with motion in the direction normal to the shock plane, generalizing a previous result to three‐dimensional phase space. We also study the evolution of the distribution properties numerically, in particular noting that the “twisting” of these surfaces in phase space is the result of the unequal guiding center motion of different parts of the distribution (which is not the case for a fully perpendicular shock). This property provides insight into the damping of oscillations in the mean momentum and the temperature for a quasi‐perpendicular model (as the distribution is spread about the central value through gyration) and the observed T⊥ > T∥ anisotropy.
Key Points
Solution to Liouville equation for distribution at a low Mach quasi‐perp shock
Evolution of dist. properties through shock studied via invariant solutions
Key features of heating incl. anisotropy studied supported with numerical model</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2011JA016529</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Astrophysics ; Boundary conditions ; Collisionless shocks ; Earth's bow shock ; Heating ; ion heating ; Liouville's equation ; Mathematical models ; Physics ; Planetology ; solar wind ; Space ; Upstream</subject><ispartof>Journal of Geophysical Research: Space Physics, 2011-09, Vol.116 (A9), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JA016529$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JA016529$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11493,27901,27902,46443,46867</link.rule.ids></links><search><creatorcontrib>Newman, P. R.</creatorcontrib><creatorcontrib>Ellacott, S. W.</creatorcontrib><creatorcontrib>Wilkinson, W. P.</creatorcontrib><title>A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks</title><title>Journal of Geophysical Research: Space Physics</title><addtitle>J. Geophys. Res</addtitle><description>The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solution to Liouville's equation as a function of six invariants, finding forms of these invariants in terms of the upstream parameters. The ion distribution is expressed as a function of one of these invariants, subject to a Maxwellian upstream boundary condition, and the evolution of the distribution through and downstream of the shock is studied. The momentum‐space volume within surfaces of constant probability (related to the temperature) is shown to be inversely proportional to an average value of the canonical momentum associated with motion in the direction normal to the shock plane, generalizing a previous result to three‐dimensional phase space. We also study the evolution of the distribution properties numerically, in particular noting that the “twisting” of these surfaces in phase space is the result of the unequal guiding center motion of different parts of the distribution (which is not the case for a fully perpendicular shock). This property provides insight into the damping of oscillations in the mean momentum and the temperature for a quasi‐perpendicular model (as the distribution is spread about the central value through gyration) and the observed T⊥ > T∥ anisotropy.
Key Points
Solution to Liouville equation for distribution at a low Mach quasi‐perp shock
Evolution of dist. properties through shock studied via invariant solutions
Key features of heating incl. anisotropy studied supported with numerical model</description><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Boundary conditions</subject><subject>Collisionless shocks</subject><subject>Earth's bow shock</subject><subject>Heating</subject><subject>ion heating</subject><subject>Liouville's equation</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Planetology</subject><subject>solar wind</subject><subject>Space</subject><subject>Upstream</subject><issn>0148-0227</issn><issn>2169-9380</issn><issn>2156-2202</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWKo3f0Dwvppkd7ObYxGtllZFKj2GJJ2l0disyW5rf4F_22hFnMtjhve9gYfQGSUXlDBxyQilkxGhvGTiAA0YLXnGGGGHaEBoUWeEseoYncb4QtIUJS8IHaDPEY6d6mzsrFEOt6tdtCbiFkJswXR2A9ivcbcCDBvv-s6mzTf4W5YJClb_3CJWJvgYsfNbPFNmhdf9m4aA33sVbZbiWlgvremdCth452xMlINExJU3r_EEHTXKRTj91SF6vrmeX91m04fx3dVompmcVEUmGkIoiIJyLnRFQRutl7zRhqla8bxOJ8ZYU0GuiS5pIaDWTQNQmbJhNCf5EJ3vc9vg33uInXzxfVinl7IWhFPKRJlM-d60tQ52sg32TYWdpER-Ny3_Ny0n46cRS1SRqGxPpV7g449S4VXyKq9Kubgfy_nscSGmT1NZ51_PIYVE</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Newman, P. R.</creator><creator>Ellacott, S. W.</creator><creator>Wilkinson, W. P.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201109</creationdate><title>A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks</title><author>Newman, P. R. ; Ellacott, S. W. ; Wilkinson, W. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Boundary conditions</topic><topic>Collisionless shocks</topic><topic>Earth's bow shock</topic><topic>Heating</topic><topic>ion heating</topic><topic>Liouville's equation</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Planetology</topic><topic>solar wind</topic><topic>Space</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newman, P. R.</creatorcontrib><creatorcontrib>Ellacott, S. W.</creatorcontrib><creatorcontrib>Wilkinson, W. P.</creatorcontrib><collection>Istex</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newman, P. R.</au><au>Ellacott, S. W.</au><au>Wilkinson, W. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks</atitle><jtitle>Journal of Geophysical Research: Space Physics</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-09</date><risdate>2011</risdate><volume>116</volume><issue>A9</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9380</issn><eissn>2156-2202</eissn><eissn>2169-9402</eissn><abstract>The heating of directly transmitted ions at low Mach number, perpendicular and quasi‐perpendicular shocks has been the subject of previous statistical physics studies. In this paper, we use a Hamiltonian formulation of the ion kinetics for a quasi‐perpendicular shock model to derive the general solution to Liouville's equation as a function of six invariants, finding forms of these invariants in terms of the upstream parameters. The ion distribution is expressed as a function of one of these invariants, subject to a Maxwellian upstream boundary condition, and the evolution of the distribution through and downstream of the shock is studied. The momentum‐space volume within surfaces of constant probability (related to the temperature) is shown to be inversely proportional to an average value of the canonical momentum associated with motion in the direction normal to the shock plane, generalizing a previous result to three‐dimensional phase space. We also study the evolution of the distribution properties numerically, in particular noting that the “twisting” of these surfaces in phase space is the result of the unequal guiding center motion of different parts of the distribution (which is not the case for a fully perpendicular shock). This property provides insight into the damping of oscillations in the mean momentum and the temperature for a quasi‐perpendicular model (as the distribution is spread about the central value through gyration) and the observed T⊥ > T∥ anisotropy.
Key Points
Solution to Liouville equation for distribution at a low Mach quasi‐perp shock
Evolution of dist. properties through shock studied via invariant solutions
Key features of heating incl. anisotropy studied supported with numerical model</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JA016529</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Space Physics, 2011-09, Vol.116 (A9), p.n/a |
issn | 0148-0227 2169-9380 2156-2202 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_890611295 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); Wiley-Blackwell AGU Digital Library |
subjects | Anisotropy Astrophysics Boundary conditions Collisionless shocks Earth's bow shock Heating ion heating Liouville's equation Mathematical models Physics Planetology solar wind Space Upstream |
title | A statistical physics perspective on the evolution of ion distributions across low Mach number quasi-perpendicular collisionless shocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20physics%20perspective%20on%20the%20evolution%20of%20ion%20distributions%20across%20low%20Mach%20number%20quasi-perpendicular%20collisionless%20shocks&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Space%20Physics&rft.au=Newman,%20P.%20R.&rft.date=2011-09&rft.volume=116&rft.issue=A9&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JA016529&rft_dat=%3Cproquest_wiley%3E2457974481%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3074-9f001e941669b71ebcbbd6fbc2a8a63871e222f7e3b0b5149e8bffee7c5f21303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=890611295&rft_id=info:pmid/&rfr_iscdi=true |