Loading…

Transmission Augmentation With Mathematical Modeling of Market Power and Strategic Generation Expansion-Part II

This paper describes a numerical approach to solving the mathematical structure proposed in the first part of this paper. The numerical approach employs a standard genetic algorithm (GA) embedded with an island parallel genetic algorithm (IPGA). The GA handles the decision variables of the transmiss...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2011-11, Vol.26 (4), p.2049-2057
Main Authors: Hesamzadeh, M. R., Biggar, D. R., Hosseinzadeh, N., Wolfs, P. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-9f79e54cb76ff9a365888c8ad87d19fae0528f37f76723cea5bf75423ceb022f3
cites cdi_FETCH-LOGICAL-c364t-9f79e54cb76ff9a365888c8ad87d19fae0528f37f76723cea5bf75423ceb022f3
container_end_page 2057
container_issue 4
container_start_page 2049
container_title IEEE transactions on power systems
container_volume 26
creator Hesamzadeh, M. R.
Biggar, D. R.
Hosseinzadeh, N.
Wolfs, P. J.
description This paper describes a numerical approach to solving the mathematical structure proposed in the first part of this paper. The numerical approach employs a standard genetic algorithm (GA) embedded with an island parallel genetic algorithm (IPGA). The GA handles the decision variables of the transmission network service provider, (TNSP) while the IPGA module finds the equilibrium of the electricity market. The IPGA module uses the concept of parallel islands with limited communication. The islands evolve in parallel and communicate with each other at a specific rate and frequency. The communication pattern helps the IPGA module to spread the best-found genes across all isolated islands. The isolated evolution removes the fitness pressure of the already-found optima from the chromosomes in other islands. A stability operator has been developed which detects stabilized islands and through a strong mutation process re-employs them in exploring the search space. To improve the efficiency of the proposed numerical solution, two high performance computing (HPC) techniques are used - shared-memory architecture and distributed-memory architecture. The application of the proposed approach to the assessment of transmission augmentation is illustrated using an IEEE 14-bus example system.
doi_str_mv 10.1109/TPWRS.2011.2145009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_900057735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5773467</ieee_id><sourcerecordid>1328509794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-9f79e54cb76ff9a365888c8ad87d19fae0528f37f76723cea5bf75423ceb022f3</originalsourceid><addsrcrecordid>eNpdkU9vGyEQxVHUSnXTfIHmgnLKIesAuyxwtPKvlhLVStzmiPB6sEnWiwOs0n77stkoh54YmN97GuYh9J2SKaVEnS8Xj_cPU0YonTJacULUAZpQzmVBaqE-oQmRkhdScfIFfY3xiRBS58YE-WUwXdy5GJ3v8Kzf7KBLJg2XR5e2-M6kLezyQ2NafOfX0Lpug73NjfAMCS_8KwRsujV-SMEk2LgG30AHYfS4-rPP9rkqFiYkPJ9_Q5-taSMcvZ-H6Nf11fLiR3H782Z-MbstmrKuUqGsUMCrZiVqa5Upay6lbKRZS7GmyhognElbCitqwcoGDF9ZwauhXBHGbHmIzkbf-Ar7fqX3we1M-Ku9cfrS_Z5pHzb6OW21UEyxjJ-O-D74lx5i0nklDbSt6cD3UdOSSU6UUFVGT_5Dn3wfuvwZrfJauRAlzxAboSb4GAPYjwEo0UNi-i0xPSSm3xPLouNR5ADgQzAYVrUo_wFfO5Ov</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900057735</pqid></control><display><type>article</type><title>Transmission Augmentation With Mathematical Modeling of Market Power and Strategic Generation Expansion-Part II</title><source>IEEE Xplore (Online service)</source><creator>Hesamzadeh, M. R. ; Biggar, D. R. ; Hosseinzadeh, N. ; Wolfs, P. J.</creator><creatorcontrib>Hesamzadeh, M. R. ; Biggar, D. R. ; Hosseinzadeh, N. ; Wolfs, P. J.</creatorcontrib><description>This paper describes a numerical approach to solving the mathematical structure proposed in the first part of this paper. The numerical approach employs a standard genetic algorithm (GA) embedded with an island parallel genetic algorithm (IPGA). The GA handles the decision variables of the transmission network service provider, (TNSP) while the IPGA module finds the equilibrium of the electricity market. The IPGA module uses the concept of parallel islands with limited communication. The islands evolve in parallel and communicate with each other at a specific rate and frequency. The communication pattern helps the IPGA module to spread the best-found genes across all isolated islands. The isolated evolution removes the fitness pressure of the already-found optima from the chromosomes in other islands. A stability operator has been developed which detects stabilized islands and through a strong mutation process re-employs them in exploring the search space. To improve the efficiency of the proposed numerical solution, two high performance computing (HPC) techniques are used - shared-memory architecture and distributed-memory architecture. The application of the proposed approach to the assessment of transmission augmentation is illustrated using an IEEE 14-bus example system.</description><identifier>ISSN: 0885-8950</identifier><identifier>ISSN: 1558-0679</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2011.2145009</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>A-stability ; Augmentation ; Biology ; Communication pattern ; Computer software selection and evaluation ; Decision variables ; Distributed memory ; Electric power generation ; Electric power transmission ; Electricity market ; Generation expansion ; Genes ; Genetic algorithms ; Heuristic optimization technique ; Heuristic optimization techniques ; High performance computing ; high performance computing techniques ; Island parallel genetic algorithms ; Islands ; Isolated evolution ; Isolated islands ; Limited communication ; Market Power ; Markets ; Mathematical analysis ; Mathematical model ; Mathematical modeling ; Mathematical models ; Mathematical operators ; Mathematical structure ; Memory architecture ; Modules ; Mutation process ; Network architecture ; Numerical analysis ; Numerical approaches ; Numerical solution ; Optimization ; Search spaces ; Shared memories ; Stability criteria ; Standard genetic algorithm ; Studies ; Topology ; transmission system augmentation ; Transmission systems</subject><ispartof>IEEE transactions on power systems, 2011-11, Vol.26 (4), p.2049-2057</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-9f79e54cb76ff9a365888c8ad87d19fae0528f37f76723cea5bf75423ceb022f3</citedby><cites>FETCH-LOGICAL-c364t-9f79e54cb76ff9a365888c8ad87d19fae0528f37f76723cea5bf75423ceb022f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5773467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-79292$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hesamzadeh, M. R.</creatorcontrib><creatorcontrib>Biggar, D. R.</creatorcontrib><creatorcontrib>Hosseinzadeh, N.</creatorcontrib><creatorcontrib>Wolfs, P. J.</creatorcontrib><title>Transmission Augmentation With Mathematical Modeling of Market Power and Strategic Generation Expansion-Part II</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper describes a numerical approach to solving the mathematical structure proposed in the first part of this paper. The numerical approach employs a standard genetic algorithm (GA) embedded with an island parallel genetic algorithm (IPGA). The GA handles the decision variables of the transmission network service provider, (TNSP) while the IPGA module finds the equilibrium of the electricity market. The IPGA module uses the concept of parallel islands with limited communication. The islands evolve in parallel and communicate with each other at a specific rate and frequency. The communication pattern helps the IPGA module to spread the best-found genes across all isolated islands. The isolated evolution removes the fitness pressure of the already-found optima from the chromosomes in other islands. A stability operator has been developed which detects stabilized islands and through a strong mutation process re-employs them in exploring the search space. To improve the efficiency of the proposed numerical solution, two high performance computing (HPC) techniques are used - shared-memory architecture and distributed-memory architecture. The application of the proposed approach to the assessment of transmission augmentation is illustrated using an IEEE 14-bus example system.</description><subject>A-stability</subject><subject>Augmentation</subject><subject>Biology</subject><subject>Communication pattern</subject><subject>Computer software selection and evaluation</subject><subject>Decision variables</subject><subject>Distributed memory</subject><subject>Electric power generation</subject><subject>Electric power transmission</subject><subject>Electricity market</subject><subject>Generation expansion</subject><subject>Genes</subject><subject>Genetic algorithms</subject><subject>Heuristic optimization technique</subject><subject>Heuristic optimization techniques</subject><subject>High performance computing</subject><subject>high performance computing techniques</subject><subject>Island parallel genetic algorithms</subject><subject>Islands</subject><subject>Isolated evolution</subject><subject>Isolated islands</subject><subject>Limited communication</subject><subject>Market Power</subject><subject>Markets</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical modeling</subject><subject>Mathematical models</subject><subject>Mathematical operators</subject><subject>Mathematical structure</subject><subject>Memory architecture</subject><subject>Modules</subject><subject>Mutation process</subject><subject>Network architecture</subject><subject>Numerical analysis</subject><subject>Numerical approaches</subject><subject>Numerical solution</subject><subject>Optimization</subject><subject>Search spaces</subject><subject>Shared memories</subject><subject>Stability criteria</subject><subject>Standard genetic algorithm</subject><subject>Studies</subject><subject>Topology</subject><subject>transmission system augmentation</subject><subject>Transmission systems</subject><issn>0885-8950</issn><issn>1558-0679</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkU9vGyEQxVHUSnXTfIHmgnLKIesAuyxwtPKvlhLVStzmiPB6sEnWiwOs0n77stkoh54YmN97GuYh9J2SKaVEnS8Xj_cPU0YonTJacULUAZpQzmVBaqE-oQmRkhdScfIFfY3xiRBS58YE-WUwXdy5GJ3v8Kzf7KBLJg2XR5e2-M6kLezyQ2NafOfX0Lpug73NjfAMCS_8KwRsujV-SMEk2LgG30AHYfS4-rPP9rkqFiYkPJ9_Q5-taSMcvZ-H6Nf11fLiR3H782Z-MbstmrKuUqGsUMCrZiVqa5Upay6lbKRZS7GmyhognElbCitqwcoGDF9ZwauhXBHGbHmIzkbf-Ar7fqX3we1M-Ku9cfrS_Z5pHzb6OW21UEyxjJ-O-D74lx5i0nklDbSt6cD3UdOSSU6UUFVGT_5Dn3wfuvwZrfJauRAlzxAboSb4GAPYjwEo0UNi-i0xPSSm3xPLouNR5ADgQzAYVrUo_wFfO5Ov</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Hesamzadeh, M. R.</creator><creator>Biggar, D. R.</creator><creator>Hosseinzadeh, N.</creator><creator>Wolfs, P. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20111101</creationdate><title>Transmission Augmentation With Mathematical Modeling of Market Power and Strategic Generation Expansion-Part II</title><author>Hesamzadeh, M. R. ; Biggar, D. R. ; Hosseinzadeh, N. ; Wolfs, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-9f79e54cb76ff9a365888c8ad87d19fae0528f37f76723cea5bf75423ceb022f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A-stability</topic><topic>Augmentation</topic><topic>Biology</topic><topic>Communication pattern</topic><topic>Computer software selection and evaluation</topic><topic>Decision variables</topic><topic>Distributed memory</topic><topic>Electric power generation</topic><topic>Electric power transmission</topic><topic>Electricity market</topic><topic>Generation expansion</topic><topic>Genes</topic><topic>Genetic algorithms</topic><topic>Heuristic optimization technique</topic><topic>Heuristic optimization techniques</topic><topic>High performance computing</topic><topic>high performance computing techniques</topic><topic>Island parallel genetic algorithms</topic><topic>Islands</topic><topic>Isolated evolution</topic><topic>Isolated islands</topic><topic>Limited communication</topic><topic>Market Power</topic><topic>Markets</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical modeling</topic><topic>Mathematical models</topic><topic>Mathematical operators</topic><topic>Mathematical structure</topic><topic>Memory architecture</topic><topic>Modules</topic><topic>Mutation process</topic><topic>Network architecture</topic><topic>Numerical analysis</topic><topic>Numerical approaches</topic><topic>Numerical solution</topic><topic>Optimization</topic><topic>Search spaces</topic><topic>Shared memories</topic><topic>Stability criteria</topic><topic>Standard genetic algorithm</topic><topic>Studies</topic><topic>Topology</topic><topic>transmission system augmentation</topic><topic>Transmission systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hesamzadeh, M. R.</creatorcontrib><creatorcontrib>Biggar, D. R.</creatorcontrib><creatorcontrib>Hosseinzadeh, N.</creatorcontrib><creatorcontrib>Wolfs, P. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesamzadeh, M. R.</au><au>Biggar, D. R.</au><au>Hosseinzadeh, N.</au><au>Wolfs, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmission Augmentation With Mathematical Modeling of Market Power and Strategic Generation Expansion-Part II</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>26</volume><issue>4</issue><spage>2049</spage><epage>2057</epage><pages>2049-2057</pages><issn>0885-8950</issn><issn>1558-0679</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper describes a numerical approach to solving the mathematical structure proposed in the first part of this paper. The numerical approach employs a standard genetic algorithm (GA) embedded with an island parallel genetic algorithm (IPGA). The GA handles the decision variables of the transmission network service provider, (TNSP) while the IPGA module finds the equilibrium of the electricity market. The IPGA module uses the concept of parallel islands with limited communication. The islands evolve in parallel and communicate with each other at a specific rate and frequency. The communication pattern helps the IPGA module to spread the best-found genes across all isolated islands. The isolated evolution removes the fitness pressure of the already-found optima from the chromosomes in other islands. A stability operator has been developed which detects stabilized islands and through a strong mutation process re-employs them in exploring the search space. To improve the efficiency of the proposed numerical solution, two high performance computing (HPC) techniques are used - shared-memory architecture and distributed-memory architecture. The application of the proposed approach to the assessment of transmission augmentation is illustrated using an IEEE 14-bus example system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2011.2145009</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2011-11, Vol.26 (4), p.2049-2057
issn 0885-8950
1558-0679
1558-0679
language eng
recordid cdi_proquest_journals_900057735
source IEEE Xplore (Online service)
subjects A-stability
Augmentation
Biology
Communication pattern
Computer software selection and evaluation
Decision variables
Distributed memory
Electric power generation
Electric power transmission
Electricity market
Generation expansion
Genes
Genetic algorithms
Heuristic optimization technique
Heuristic optimization techniques
High performance computing
high performance computing techniques
Island parallel genetic algorithms
Islands
Isolated evolution
Isolated islands
Limited communication
Market Power
Markets
Mathematical analysis
Mathematical model
Mathematical modeling
Mathematical models
Mathematical operators
Mathematical structure
Memory architecture
Modules
Mutation process
Network architecture
Numerical analysis
Numerical approaches
Numerical solution
Optimization
Search spaces
Shared memories
Stability criteria
Standard genetic algorithm
Studies
Topology
transmission system augmentation
Transmission systems
title Transmission Augmentation With Mathematical Modeling of Market Power and Strategic Generation Expansion-Part II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmission%20Augmentation%20With%20Mathematical%20Modeling%20of%20Market%20Power%20and%20Strategic%20Generation%20Expansion-Part%20II&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Hesamzadeh,%20M.%20R.&rft.date=2011-11-01&rft.volume=26&rft.issue=4&rft.spage=2049&rft.epage=2057&rft.pages=2049-2057&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2011.2145009&rft_dat=%3Cproquest_cross%3E1328509794%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-9f79e54cb76ff9a365888c8ad87d19fae0528f37f76723cea5bf75423ceb022f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=900057735&rft_id=info:pmid/&rft_ieee_id=5773467&rfr_iscdi=true