Loading…
Plasmonics Goes Quantum
A combined plasmonics and metamaterials approach may allow light-matter interaction to be controlled at the single-photon level. Light in a silica fiber and electrons in silicon are the backbones of current communication and computation systems. A seamless interface between the two can guarantee the...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2011-10, Vol.334 (6055), p.463-464 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c290t-cf32afcd2cd6965ce0b66463f56156b0cfec9ac3a61f3b02fc740379ab1a059b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c290t-cf32afcd2cd6965ce0b66463f56156b0cfec9ac3a61f3b02fc740379ab1a059b3 |
container_end_page | 464 |
container_issue | 6055 |
container_start_page | 463 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 334 |
creator | Jacob, Zubin Shalaev, Vladimir M. |
description | A combined plasmonics and metamaterials approach may allow light-matter interaction to be controlled at the single-photon level.
Light in a silica fiber and electrons in silicon are the backbones of current communication and computation systems. A seamless interface between the two can guarantee the use of light to overcome issues related to the resistive time delay of electrons within integrated circuits. However, a fundamental incompatibility arises between photonics and nanometer-scale electronics because light breaks free when confined to sizes below its wavelength. Instead, coupling light to the free electrons of metals can lead to a quasiparticle called a plasmon, with nanometer-scale mode volumes. The resulting possibility of efficiently interfacing photonics and nanoelectronics has been the impetus for the field of plasmonics (
1
). Recent work has shown that these nanoscale plasmons, which can transmit classical information with unprecedented bandwidth, are also naturally conducive to quantum information processing (
2
). |
doi_str_mv | 10.1126/science.1211736 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_900830740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41351305</jstor_id><sourcerecordid>41351305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-cf32afcd2cd6965ce0b66463f56156b0cfec9ac3a61f3b02fc740379ab1a059b3</originalsourceid><addsrcrecordid>eNo9j0FLw0AQhRdRMEbPPQnFe9qZne6me5SiVSiooOdlM92FlDapu8nBf29LQk9zeN97wyfEBGGGKPU8ce0b9jOUiCXpK5EhGFUYCXQtMgDSxRJKdSvuUtoBnDJDmZh87l06tE3NabpufZp-9a7p-sO9uAlun_zDeHPx8_ryvXorNh_r99XzpmBpoCs4kHSBt5K32mjFHiqtF5qC0qh0BRw8G8fkNAaqQAYuF0ClcRU6UKaiXDwNu8fY_vY-dXbX9rE5vbQGYElw5nMxHyCObUrRB3uM9cHFP4tgz_J2lLej_KnxODR2qWvjBV8gKSRQ9A-OElZ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900830740</pqid></control><display><type>article</type><title>Plasmonics Goes Quantum</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Jacob, Zubin ; Shalaev, Vladimir M.</creator><creatorcontrib>Jacob, Zubin ; Shalaev, Vladimir M.</creatorcontrib><description>A combined plasmonics and metamaterials approach may allow light-matter interaction to be controlled at the single-photon level.
Light in a silica fiber and electrons in silicon are the backbones of current communication and computation systems. A seamless interface between the two can guarantee the use of light to overcome issues related to the resistive time delay of electrons within integrated circuits. However, a fundamental incompatibility arises between photonics and nanometer-scale electronics because light breaks free when confined to sizes below its wavelength. Instead, coupling light to the free electrons of metals can lead to a quasiparticle called a plasmon, with nanometer-scale mode volumes. The resulting possibility of efficiently interfacing photonics and nanoelectronics has been the impetus for the field of plasmonics (
1
). Recent work has shown that these nanoscale plasmons, which can transmit classical information with unprecedented bandwidth, are also naturally conducive to quantum information processing (
2
).</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1211736</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Electrons ; Information processing ; Integrated circuits ; Lead ; Light ; Multidisciplinary research ; Nanotechnology ; Nanowires ; Optical fibers ; PERSPECTIVES ; Photonics ; Photons ; Physics ; Plasmons ; Quantum theory</subject><ispartof>Science (American Association for the Advancement of Science), 2011-10, Vol.334 (6055), p.463-464</ispartof><rights>Copyright © 2011 American Association for the Advancement of Science</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-cf32afcd2cd6965ce0b66463f56156b0cfec9ac3a61f3b02fc740379ab1a059b3</citedby><cites>FETCH-LOGICAL-c290t-cf32afcd2cd6965ce0b66463f56156b0cfec9ac3a61f3b02fc740379ab1a059b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41351305$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41351305$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,2871,2872,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Jacob, Zubin</creatorcontrib><creatorcontrib>Shalaev, Vladimir M.</creatorcontrib><title>Plasmonics Goes Quantum</title><title>Science (American Association for the Advancement of Science)</title><description>A combined plasmonics and metamaterials approach may allow light-matter interaction to be controlled at the single-photon level.
Light in a silica fiber and electrons in silicon are the backbones of current communication and computation systems. A seamless interface between the two can guarantee the use of light to overcome issues related to the resistive time delay of electrons within integrated circuits. However, a fundamental incompatibility arises between photonics and nanometer-scale electronics because light breaks free when confined to sizes below its wavelength. Instead, coupling light to the free electrons of metals can lead to a quasiparticle called a plasmon, with nanometer-scale mode volumes. The resulting possibility of efficiently interfacing photonics and nanoelectronics has been the impetus for the field of plasmonics (
1
). Recent work has shown that these nanoscale plasmons, which can transmit classical information with unprecedented bandwidth, are also naturally conducive to quantum information processing (
2
).</description><subject>Electrons</subject><subject>Information processing</subject><subject>Integrated circuits</subject><subject>Lead</subject><subject>Light</subject><subject>Multidisciplinary research</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optical fibers</subject><subject>PERSPECTIVES</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Plasmons</subject><subject>Quantum theory</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9j0FLw0AQhRdRMEbPPQnFe9qZne6me5SiVSiooOdlM92FlDapu8nBf29LQk9zeN97wyfEBGGGKPU8ce0b9jOUiCXpK5EhGFUYCXQtMgDSxRJKdSvuUtoBnDJDmZh87l06tE3NabpufZp-9a7p-sO9uAlun_zDeHPx8_ryvXorNh_r99XzpmBpoCs4kHSBt5K32mjFHiqtF5qC0qh0BRw8G8fkNAaqQAYuF0ClcRU6UKaiXDwNu8fY_vY-dXbX9rE5vbQGYElw5nMxHyCObUrRB3uM9cHFP4tgz_J2lLej_KnxODR2qWvjBV8gKSRQ9A-OElZ5</recordid><startdate>20111028</startdate><enddate>20111028</enddate><creator>Jacob, Zubin</creator><creator>Shalaev, Vladimir M.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20111028</creationdate><title>Plasmonics Goes Quantum</title><author>Jacob, Zubin ; Shalaev, Vladimir M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-cf32afcd2cd6965ce0b66463f56156b0cfec9ac3a61f3b02fc740379ab1a059b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electrons</topic><topic>Information processing</topic><topic>Integrated circuits</topic><topic>Lead</topic><topic>Light</topic><topic>Multidisciplinary research</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optical fibers</topic><topic>PERSPECTIVES</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Plasmons</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Zubin</creatorcontrib><creatorcontrib>Shalaev, Vladimir M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Zubin</au><au>Shalaev, Vladimir M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonics Goes Quantum</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2011-10-28</date><risdate>2011</risdate><volume>334</volume><issue>6055</issue><spage>463</spage><epage>464</epage><pages>463-464</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>A combined plasmonics and metamaterials approach may allow light-matter interaction to be controlled at the single-photon level.
Light in a silica fiber and electrons in silicon are the backbones of current communication and computation systems. A seamless interface between the two can guarantee the use of light to overcome issues related to the resistive time delay of electrons within integrated circuits. However, a fundamental incompatibility arises between photonics and nanometer-scale electronics because light breaks free when confined to sizes below its wavelength. Instead, coupling light to the free electrons of metals can lead to a quasiparticle called a plasmon, with nanometer-scale mode volumes. The resulting possibility of efficiently interfacing photonics and nanoelectronics has been the impetus for the field of plasmonics (
1
). Recent work has shown that these nanoscale plasmons, which can transmit classical information with unprecedented bandwidth, are also naturally conducive to quantum information processing (
2
).</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1211736</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2011-10, Vol.334 (6055), p.463-464 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_journals_900830740 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Electrons Information processing Integrated circuits Lead Light Multidisciplinary research Nanotechnology Nanowires Optical fibers PERSPECTIVES Photonics Photons Physics Plasmons Quantum theory |
title | Plasmonics Goes Quantum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonics%20Goes%20Quantum&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Jacob,%20Zubin&rft.date=2011-10-28&rft.volume=334&rft.issue=6055&rft.spage=463&rft.epage=464&rft.pages=463-464&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1211736&rft_dat=%3Cjstor_proqu%3E41351305%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-cf32afcd2cd6965ce0b66463f56156b0cfec9ac3a61f3b02fc740379ab1a059b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=900830740&rft_id=info:pmid/&rft_jstor_id=41351305&rfr_iscdi=true |