Loading…
CNoC: High-Radix Clos Network-on-Chip
Many high-radix network-on-chip (NoC) topologies have been proposed to improve network performance with an ever-growing number of processing elements (PEs) on a chip. We believe high-radix Clos network-on-chip (CNoC) is the most promising with its low average hop counts and good load-balancing chara...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 2011-12, Vol.30 (12), p.1897-1910 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-93c30a9e8388243f6ea0d0f4d964c4e566e9bbeb9bacd10f5a8c66e6c2dc68733 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-93c30a9e8388243f6ea0d0f4d964c4e566e9bbeb9bacd10f5a8c66e6c2dc68733 |
container_end_page | 1910 |
container_issue | 12 |
container_start_page | 1897 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 30 |
creator | Yu-Hsiang Kao Ming Yang Artan, N. S. Chao, H. J. |
description | Many high-radix network-on-chip (NoC) topologies have been proposed to improve network performance with an ever-growing number of processing elements (PEs) on a chip. We believe high-radix Clos network-on-chip (CNoC) is the most promising with its low average hop counts and good load-balancing characteristics. In this paper, we propose: 1) a high-radix router architecture with virtual output queue (VOQ) buffer structure and packet mode dual round-robin matching (PDRRM) scheduling algorithm to achieve high speed and high throughput in CNoC; 2) the design of hierarchical round-robin arbiter for high-radix high-speed NoC routers; and 3) a heuristic floor-planning algorithm to minimize the power consumption caused by the long wires. Experimental results show that the throughput of a 64-node three-stage CNoC under uniform traffic increases from 62% to 78% by replacing the baseline virtual channel routers with PDRRM VOQ routers. We also compared the delay, power, and area performance of the 64-node CNoC with other NoC topologies under various synthetic traffic patterns and SPLASH-2 benchmark traces. The simulation results show that in general CNoC improves the throughput, low-load delay, and energy efficiency over the compared NoC topologies. |
doi_str_mv | 10.1109/TCAD.2011.2164538 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_905202487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6071084</ieee_id><sourcerecordid>963860711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-93c30a9e8388243f6ea0d0f4d964c4e566e9bbeb9bacd10f5a8c66e6c2dc68733</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMoWKsPIF6KIJ5SZ5JsNvFWtmqFUkHqOWSzWbt129RNi_r27tLiwdPA8P3_DB8hlwhDRNB382w0HjJAHDKUIuHqiPRQ85QKTPCY9ICligKkcErOYlwCoEiY7pGbbBay-8Gkel_QV1tU34OsDnEw89uv0HzQsKbZotqck5PS1tFfHGafvD0-zLMJnb48PWejKXWciS3V3HGw2iuuFBO8lN5CAaUotBRO-ERKr_Pc5zq3rkAoE6tcu5OOFU6qlPM-ud33bprwufNxa1ZVdL6u7dqHXTRaciUhRWzJ63_kMuyadfuc0ZAwYKLt6xPcQ64JMTa-NJumWtnmxyCYTpvptJlOmzloazNX-0zlvf_ju6OgBP8FDLplzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905202487</pqid></control><display><type>article</type><title>CNoC: High-Radix Clos Network-on-Chip</title><source>IEEE Xplore (Online service)</source><creator>Yu-Hsiang Kao ; Ming Yang ; Artan, N. S. ; Chao, H. J.</creator><creatorcontrib>Yu-Hsiang Kao ; Ming Yang ; Artan, N. S. ; Chao, H. J.</creatorcontrib><description>Many high-radix network-on-chip (NoC) topologies have been proposed to improve network performance with an ever-growing number of processing elements (PEs) on a chip. We believe high-radix Clos network-on-chip (CNoC) is the most promising with its low average hop counts and good load-balancing characteristics. In this paper, we propose: 1) a high-radix router architecture with virtual output queue (VOQ) buffer structure and packet mode dual round-robin matching (PDRRM) scheduling algorithm to achieve high speed and high throughput in CNoC; 2) the design of hierarchical round-robin arbiter for high-radix high-speed NoC routers; and 3) a heuristic floor-planning algorithm to minimize the power consumption caused by the long wires. Experimental results show that the throughput of a 64-node three-stage CNoC under uniform traffic increases from 62% to 78% by replacing the baseline virtual channel routers with PDRRM VOQ routers. We also compared the delay, power, and area performance of the 64-node CNoC with other NoC topologies under various synthetic traffic patterns and SPLASH-2 benchmark traces. The simulation results show that in general CNoC improves the throughput, low-load delay, and energy efficiency over the compared NoC topologies.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2011.2164538</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Chip multiprocessor ; clos network ; Delay ; Design engineering ; Heuristic algorithms ; High speed ; high-radix NoC ; Network topology ; Network-on-a-chip ; network-on-chip ; Power demand ; Routers ; Scheduling algorithm ; Studies ; Throughput ; Topology ; Traffic engineering ; Traffic flow</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2011-12, Vol.30 (12), p.1897-1910</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-93c30a9e8388243f6ea0d0f4d964c4e566e9bbeb9bacd10f5a8c66e6c2dc68733</citedby><cites>FETCH-LOGICAL-c324t-93c30a9e8388243f6ea0d0f4d964c4e566e9bbeb9bacd10f5a8c66e6c2dc68733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6071084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Yu-Hsiang Kao</creatorcontrib><creatorcontrib>Ming Yang</creatorcontrib><creatorcontrib>Artan, N. S.</creatorcontrib><creatorcontrib>Chao, H. J.</creatorcontrib><title>CNoC: High-Radix Clos Network-on-Chip</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Many high-radix network-on-chip (NoC) topologies have been proposed to improve network performance with an ever-growing number of processing elements (PEs) on a chip. We believe high-radix Clos network-on-chip (CNoC) is the most promising with its low average hop counts and good load-balancing characteristics. In this paper, we propose: 1) a high-radix router architecture with virtual output queue (VOQ) buffer structure and packet mode dual round-robin matching (PDRRM) scheduling algorithm to achieve high speed and high throughput in CNoC; 2) the design of hierarchical round-robin arbiter for high-radix high-speed NoC routers; and 3) a heuristic floor-planning algorithm to minimize the power consumption caused by the long wires. Experimental results show that the throughput of a 64-node three-stage CNoC under uniform traffic increases from 62% to 78% by replacing the baseline virtual channel routers with PDRRM VOQ routers. We also compared the delay, power, and area performance of the 64-node CNoC with other NoC topologies under various synthetic traffic patterns and SPLASH-2 benchmark traces. The simulation results show that in general CNoC improves the throughput, low-load delay, and energy efficiency over the compared NoC topologies.</description><subject>Algorithms</subject><subject>Chip multiprocessor</subject><subject>clos network</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Heuristic algorithms</subject><subject>High speed</subject><subject>high-radix NoC</subject><subject>Network topology</subject><subject>Network-on-a-chip</subject><subject>network-on-chip</subject><subject>Power demand</subject><subject>Routers</subject><subject>Scheduling algorithm</subject><subject>Studies</subject><subject>Throughput</subject><subject>Topology</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEQhoMoWKsPIF6KIJ5SZ5JsNvFWtmqFUkHqOWSzWbt129RNi_r27tLiwdPA8P3_DB8hlwhDRNB382w0HjJAHDKUIuHqiPRQ85QKTPCY9ICligKkcErOYlwCoEiY7pGbbBay-8Gkel_QV1tU34OsDnEw89uv0HzQsKbZotqck5PS1tFfHGafvD0-zLMJnb48PWejKXWciS3V3HGw2iuuFBO8lN5CAaUotBRO-ERKr_Pc5zq3rkAoE6tcu5OOFU6qlPM-ud33bprwufNxa1ZVdL6u7dqHXTRaciUhRWzJ63_kMuyadfuc0ZAwYKLt6xPcQ64JMTa-NJumWtnmxyCYTpvptJlOmzloazNX-0zlvf_ju6OgBP8FDLplzw</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Yu-Hsiang Kao</creator><creator>Ming Yang</creator><creator>Artan, N. S.</creator><creator>Chao, H. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201112</creationdate><title>CNoC: High-Radix Clos Network-on-Chip</title><author>Yu-Hsiang Kao ; Ming Yang ; Artan, N. S. ; Chao, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-93c30a9e8388243f6ea0d0f4d964c4e566e9bbeb9bacd10f5a8c66e6c2dc68733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Chip multiprocessor</topic><topic>clos network</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Heuristic algorithms</topic><topic>High speed</topic><topic>high-radix NoC</topic><topic>Network topology</topic><topic>Network-on-a-chip</topic><topic>network-on-chip</topic><topic>Power demand</topic><topic>Routers</topic><topic>Scheduling algorithm</topic><topic>Studies</topic><topic>Throughput</topic><topic>Topology</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu-Hsiang Kao</creatorcontrib><creatorcontrib>Ming Yang</creatorcontrib><creatorcontrib>Artan, N. S.</creatorcontrib><creatorcontrib>Chao, H. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu-Hsiang Kao</au><au>Ming Yang</au><au>Artan, N. S.</au><au>Chao, H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNoC: High-Radix Clos Network-on-Chip</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2011-12</date><risdate>2011</risdate><volume>30</volume><issue>12</issue><spage>1897</spage><epage>1910</epage><pages>1897-1910</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Many high-radix network-on-chip (NoC) topologies have been proposed to improve network performance with an ever-growing number of processing elements (PEs) on a chip. We believe high-radix Clos network-on-chip (CNoC) is the most promising with its low average hop counts and good load-balancing characteristics. In this paper, we propose: 1) a high-radix router architecture with virtual output queue (VOQ) buffer structure and packet mode dual round-robin matching (PDRRM) scheduling algorithm to achieve high speed and high throughput in CNoC; 2) the design of hierarchical round-robin arbiter for high-radix high-speed NoC routers; and 3) a heuristic floor-planning algorithm to minimize the power consumption caused by the long wires. Experimental results show that the throughput of a 64-node three-stage CNoC under uniform traffic increases from 62% to 78% by replacing the baseline virtual channel routers with PDRRM VOQ routers. We also compared the delay, power, and area performance of the 64-node CNoC with other NoC topologies under various synthetic traffic patterns and SPLASH-2 benchmark traces. The simulation results show that in general CNoC improves the throughput, low-load delay, and energy efficiency over the compared NoC topologies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2011.2164538</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2011-12, Vol.30 (12), p.1897-1910 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_journals_905202487 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Chip multiprocessor clos network Delay Design engineering Heuristic algorithms High speed high-radix NoC Network topology Network-on-a-chip network-on-chip Power demand Routers Scheduling algorithm Studies Throughput Topology Traffic engineering Traffic flow |
title | CNoC: High-Radix Clos Network-on-Chip |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNoC:%20High-Radix%20Clos%20Network-on-Chip&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Yu-Hsiang%20Kao&rft.date=2011-12&rft.volume=30&rft.issue=12&rft.spage=1897&rft.epage=1910&rft.pages=1897-1910&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2011.2164538&rft_dat=%3Cproquest_ieee_%3E963860711%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-93c30a9e8388243f6ea0d0f4d964c4e566e9bbeb9bacd10f5a8c66e6c2dc68733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905202487&rft_id=info:pmid/&rft_ieee_id=6071084&rfr_iscdi=true |