Loading…

Oxide thermoelectrics: The challenges, progress, and outlook

Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2011-08, Vol.26 (15), p.1762-1772
Main Authors: He, Jian, Liu, Yufei, Funahashi, Ryoji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3
cites cdi_FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3
container_end_page 1772
container_issue 15
container_start_page 1762
container_title Journal of materials research
container_volume 26
creator He, Jian
Liu, Yufei
Funahashi, Ryoji
description Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.
doi_str_mv 10.1557/jmr.2011.108
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_908621351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2011_108</cupid><sourcerecordid>2527956521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZv_oDguYmzX9lEvEipH1DopZ7D7ma2TU2aupuC_nu3tOBJPM0wPPPOOy8htxQyKqW633Q-Y0BpRqE4IyMGQqSSs_ycjKAoRMpKKi7JVQgbACpBiRF5XHw1NSbDGn3XY4t28I0ND8lyjYld67bF7QrDJNn5fuUxxE5v66TfD23ff1yTC6fbgDenOibvz7Pl9DWdL17epk_z1AqQQ2rAMFS5QR7N0FzyGjjTWtLSOsWlcVi6GpQxFrkDpZigKkeJ0vCSO2P4mNwddaOLzz2Godr0e7-NJ6sSipxRLmmEJkfI-j4Ej67a-abT_ruiUB3iqWI81SGeOCginh7xELH4o__V_IPPTvK6M76pV_jPwg_iI3Xs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908621351</pqid></control><display><type>article</type><title>Oxide thermoelectrics: The challenges, progress, and outlook</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>He, Jian ; Liu, Yufei ; Funahashi, Ryoji</creator><creatorcontrib>He, Jian ; Liu, Yufei ; Funahashi, Ryoji</creatorcontrib><description>Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2011.108</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Biomaterials ; Crystal structure ; Efficiency ; Electricity ; Electronics ; Heat conductivity ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanostructured materials ; Nanotechnology ; Semiconductors ; Studies ; Thermodynamics</subject><ispartof>Journal of materials research, 2011-08, Vol.26 (15), p.1762-1772</ispartof><rights>Copyright © Materials Research Society 2011</rights><rights>The Materials Research Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3</citedby><cites>FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/908621351/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/908621351?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Liu, Yufei</creatorcontrib><creatorcontrib>Funahashi, Ryoji</creatorcontrib><title>Oxide thermoelectrics: The challenges, progress, and outlook</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Crystal structure</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>Electronics</subject><subject>Heat conductivity</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Semiconductors</subject><subject>Studies</subject><subject>Thermodynamics</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkE1Lw0AQhhdRsFZv_oDguYmzX9lEvEipH1DopZ7D7ma2TU2aupuC_nu3tOBJPM0wPPPOOy8htxQyKqW633Q-Y0BpRqE4IyMGQqSSs_ycjKAoRMpKKi7JVQgbACpBiRF5XHw1NSbDGn3XY4t28I0ND8lyjYld67bF7QrDJNn5fuUxxE5v66TfD23ff1yTC6fbgDenOibvz7Pl9DWdL17epk_z1AqQQ2rAMFS5QR7N0FzyGjjTWtLSOsWlcVi6GpQxFrkDpZigKkeJ0vCSO2P4mNwddaOLzz2Godr0e7-NJ6sSipxRLmmEJkfI-j4Ej67a-abT_ruiUB3iqWI81SGeOCginh7xELH4o__V_IPPTvK6M76pV_jPwg_iI3Xs</recordid><startdate>20110814</startdate><enddate>20110814</enddate><creator>He, Jian</creator><creator>Liu, Yufei</creator><creator>Funahashi, Ryoji</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110814</creationdate><title>Oxide thermoelectrics: The challenges, progress, and outlook</title><author>He, Jian ; Liu, Yufei ; Funahashi, Ryoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Crystal structure</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>Electronics</topic><topic>Heat conductivity</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Semiconductors</topic><topic>Studies</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Liu, Yufei</creatorcontrib><creatorcontrib>Funahashi, Ryoji</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jian</au><au>Liu, Yufei</au><au>Funahashi, Ryoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide thermoelectrics: The challenges, progress, and outlook</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2011-08-14</date><risdate>2011</risdate><volume>26</volume><issue>15</issue><spage>1762</spage><epage>1772</epage><pages>1762-1772</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2011.108</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2011-08, Vol.26 (15), p.1762-1772
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_908621351
source ABI/INFORM Global; Springer Nature
subjects Analysis
Applied and Technical Physics
Biomaterials
Crystal structure
Efficiency
Electricity
Electronics
Heat conductivity
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Nanostructured materials
Nanotechnology
Semiconductors
Studies
Thermodynamics
title Oxide thermoelectrics: The challenges, progress, and outlook
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide%20thermoelectrics:%20The%20challenges,%20progress,%20and%20outlook&rft.jtitle=Journal%20of%20materials%20research&rft.au=He,%20Jian&rft.date=2011-08-14&rft.volume=26&rft.issue=15&rft.spage=1762&rft.epage=1772&rft.pages=1762-1772&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2011.108&rft_dat=%3Cproquest_cross%3E2527956521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=908621351&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2011_108&rfr_iscdi=true