Loading…
Oxide thermoelectrics: The challenges, progress, and outlook
Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of...
Saved in:
Published in: | Journal of materials research 2011-08, Vol.26 (15), p.1762-1772 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3 |
container_end_page | 1772 |
container_issue | 15 |
container_start_page | 1762 |
container_title | Journal of materials research |
container_volume | 26 |
creator | He, Jian Liu, Yufei Funahashi, Ryoji |
description | Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module. |
doi_str_mv | 10.1557/jmr.2011.108 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_908621351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2011_108</cupid><sourcerecordid>2527956521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZv_oDguYmzX9lEvEipH1DopZ7D7ma2TU2aupuC_nu3tOBJPM0wPPPOOy8htxQyKqW633Q-Y0BpRqE4IyMGQqSSs_ycjKAoRMpKKi7JVQgbACpBiRF5XHw1NSbDGn3XY4t28I0ND8lyjYld67bF7QrDJNn5fuUxxE5v66TfD23ff1yTC6fbgDenOibvz7Pl9DWdL17epk_z1AqQQ2rAMFS5QR7N0FzyGjjTWtLSOsWlcVi6GpQxFrkDpZigKkeJ0vCSO2P4mNwddaOLzz2Godr0e7-NJ6sSipxRLmmEJkfI-j4Ej67a-abT_ruiUB3iqWI81SGeOCginh7xELH4o__V_IPPTvK6M76pV_jPwg_iI3Xs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908621351</pqid></control><display><type>article</type><title>Oxide thermoelectrics: The challenges, progress, and outlook</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>He, Jian ; Liu, Yufei ; Funahashi, Ryoji</creator><creatorcontrib>He, Jian ; Liu, Yufei ; Funahashi, Ryoji</creatorcontrib><description>Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2011.108</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Biomaterials ; Crystal structure ; Efficiency ; Electricity ; Electronics ; Heat conductivity ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanostructured materials ; Nanotechnology ; Semiconductors ; Studies ; Thermodynamics</subject><ispartof>Journal of materials research, 2011-08, Vol.26 (15), p.1762-1772</ispartof><rights>Copyright © Materials Research Society 2011</rights><rights>The Materials Research Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3</citedby><cites>FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/908621351/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/908621351?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Liu, Yufei</creatorcontrib><creatorcontrib>Funahashi, Ryoji</creatorcontrib><title>Oxide thermoelectrics: The challenges, progress, and outlook</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Crystal structure</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>Electronics</subject><subject>Heat conductivity</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Semiconductors</subject><subject>Studies</subject><subject>Thermodynamics</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkE1Lw0AQhhdRsFZv_oDguYmzX9lEvEipH1DopZ7D7ma2TU2aupuC_nu3tOBJPM0wPPPOOy8htxQyKqW633Q-Y0BpRqE4IyMGQqSSs_ycjKAoRMpKKi7JVQgbACpBiRF5XHw1NSbDGn3XY4t28I0ND8lyjYld67bF7QrDJNn5fuUxxE5v66TfD23ff1yTC6fbgDenOibvz7Pl9DWdL17epk_z1AqQQ2rAMFS5QR7N0FzyGjjTWtLSOsWlcVi6GpQxFrkDpZigKkeJ0vCSO2P4mNwddaOLzz2Godr0e7-NJ6sSipxRLmmEJkfI-j4Ej67a-abT_ruiUB3iqWI81SGeOCginh7xELH4o__V_IPPTvK6M76pV_jPwg_iI3Xs</recordid><startdate>20110814</startdate><enddate>20110814</enddate><creator>He, Jian</creator><creator>Liu, Yufei</creator><creator>Funahashi, Ryoji</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110814</creationdate><title>Oxide thermoelectrics: The challenges, progress, and outlook</title><author>He, Jian ; Liu, Yufei ; Funahashi, Ryoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Crystal structure</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>Electronics</topic><topic>Heat conductivity</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Semiconductors</topic><topic>Studies</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Liu, Yufei</creatorcontrib><creatorcontrib>Funahashi, Ryoji</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jian</au><au>Liu, Yufei</au><au>Funahashi, Ryoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide thermoelectrics: The challenges, progress, and outlook</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2011-08-14</date><risdate>2011</risdate><volume>26</volume><issue>15</issue><spage>1762</spage><epage>1772</epage><pages>1762-1772</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2011.108</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2011-08, Vol.26 (15), p.1762-1772 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_908621351 |
source | ABI/INFORM Global; Springer Nature |
subjects | Analysis Applied and Technical Physics Biomaterials Crystal structure Efficiency Electricity Electronics Heat conductivity Inorganic Chemistry Materials Engineering Materials research Materials Science Nanostructured materials Nanotechnology Semiconductors Studies Thermodynamics |
title | Oxide thermoelectrics: The challenges, progress, and outlook |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide%20thermoelectrics:%20The%20challenges,%20progress,%20and%20outlook&rft.jtitle=Journal%20of%20materials%20research&rft.au=He,%20Jian&rft.date=2011-08-14&rft.volume=26&rft.issue=15&rft.spage=1762&rft.epage=1772&rft.pages=1762-1772&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2011.108&rft_dat=%3Cproquest_cross%3E2527956521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-b0b2e76be35321653d032aa519cf735bfe9fd07bbce3f07724176e5e5b393fbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=908621351&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2011_108&rfr_iscdi=true |