Loading…

Tunable optical narrowband filter using a gain-coupled phase-shift-controlled distributed feedback laser

In this paper, we have proposed and analyzed a new tunable optical narrowband filter using gain-coupled phase-shift-controlled distributed feedback (GC-PSC-DFB) laser diode. Coupled-mode equations are solved by using the transfer matrix method (TMM). The GC-PSC-DFB filters offer a stable single-mode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics 2005-09, Vol.11 (5), p.913-918
Main Authors: Kian Yong Lim, Low, A.L.Y., Su Fong Chien, Ghafouri-Shiraz, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we have proposed and analyzed a new tunable optical narrowband filter using gain-coupled phase-shift-controlled distributed feedback (GC-PSC-DFB) laser diode. Coupled-mode equations are solved by using the transfer matrix method (TMM). The GC-PSC-DFB filters offer a stable single-mode bandpass output, similar to that obtained with phase-shifted index-coupled structures. However, GC structures do not suffer from the severe longitudinal spatial hole burning (SHB) that occurs in high-coupling quarter-wave-shifted DFB filters. This SHB can cause multimoded behavior for high-input signal power. Various filter parameters such as wavelength tuning range, side-mode suppression ratio (SMSR), and channel gain deviation have been investigated and discussed. Our results show that the GC DFB structures offer a wider tuning range of 23.3 /spl Aring/ compared with the similar index-coupled DFB structures with nearly steady bandwidth of 12 GHz, while maintaining 41.8-dB constant gain.
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2005.854151