Loading…
On the Kashiwara–Vergne conjecture
Let G be a connected Lie group, with Lie algebra (ProQuest: Formulae and/or non-USASCII text omitted; see image) . In 1977, Duflo constructed a homomorphism of (ProQuest: Formulae and/or non-USASCII text omitted; see image) -modules (ProQuest: Formulae and/or non-USASCII text omitted; see image) , w...
Saved in:
Published in: | Inventiones mathematicae 2006-06, Vol.164 (3), p.615-634 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-f6fd39002a03e032bf3ab4d0510bcd21beec78e8521118d55734a1b9fd3c065d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-f6fd39002a03e032bf3ab4d0510bcd21beec78e8521118d55734a1b9fd3c065d3 |
container_end_page | 634 |
container_issue | 3 |
container_start_page | 615 |
container_title | Inventiones mathematicae |
container_volume | 164 |
creator | Alekseev, A. Meinrenken, E. |
description | Let G be a connected Lie group, with Lie algebra (ProQuest: Formulae and/or non-USASCII text omitted; see image) . In 1977, Duflo constructed a homomorphism of (ProQuest: Formulae and/or non-USASCII text omitted; see image) -modules (ProQuest: Formulae and/or non-USASCII text omitted; see image) , which restricts to an algebra isomorphism on invariants. Kashiwara and Vergne (1978) proposed a conjecture on the Campbell-Hausdorff series, which (among other things) extends the Duflo theorem to germs of bi-invariant distributions on the Lie group G. The main results of the present paper are as follows. (1) Using a recent result of Torossian (2002), we establish the Kashiwara-Vergne conjecture for any Lie group G. (2) We give a reformulation of the Kashiwara-Vergne property in terms of Lie algebra cohomology. As a direct corollary, one obtains the algebra isomorphism (ProQuest: Formulae and/or non-USASCII text omitted; see image) , as well as a more general statement for distributions. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00222-005-0486-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_912147947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544227571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-f6fd39002a03e032bf3ab4d0510bcd21beec78e8521118d55734a1b9fd3c065d3</originalsourceid><addsrcrecordid>eNotkLtOwzAUhi0EEqXwAGwRYjWc40scj6iCgqjUBVgtxzmhjSApdirExjvwhjwJrsr0D_9N-hg7R7hCAHOdAIQQHEBzUFXJ1QGboJKCo7DmkE2yDdxahGN2klIHkE0jJuxy2RfjiopHn1brTx_97_fPC8XXnoow9B2FcRvplB21_i3R2b9O2fPd7dPsni-W84fZzYIHiXrkbdk20uYnD5JAirqVvlYNaIQ6NAJromAqqrRAxKrR2kjlsba5FaDUjZyyi_3uJg4fW0qj64Zt7POlsyhQGatMDuE-FOKQUqTWbeL63ccvh-B2LNyehcss3I6FU_IPHTlQtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912147947</pqid></control><display><type>article</type><title>On the Kashiwara–Vergne conjecture</title><source>Springer Nature</source><creator>Alekseev, A. ; Meinrenken, E.</creator><creatorcontrib>Alekseev, A. ; Meinrenken, E.</creatorcontrib><description>Let G be a connected Lie group, with Lie algebra (ProQuest: Formulae and/or non-USASCII text omitted; see image) . In 1977, Duflo constructed a homomorphism of (ProQuest: Formulae and/or non-USASCII text omitted; see image) -modules (ProQuest: Formulae and/or non-USASCII text omitted; see image) , which restricts to an algebra isomorphism on invariants. Kashiwara and Vergne (1978) proposed a conjecture on the Campbell-Hausdorff series, which (among other things) extends the Duflo theorem to germs of bi-invariant distributions on the Lie group G. The main results of the present paper are as follows. (1) Using a recent result of Torossian (2002), we establish the Kashiwara-Vergne conjecture for any Lie group G. (2) We give a reformulation of the Kashiwara-Vergne property in terms of Lie algebra cohomology. As a direct corollary, one obtains the algebra isomorphism (ProQuest: Formulae and/or non-USASCII text omitted; see image) , as well as a more general statement for distributions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-005-0486-4</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algebra ; Lie groups</subject><ispartof>Inventiones mathematicae, 2006-06, Vol.164 (3), p.615-634</ispartof><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-f6fd39002a03e032bf3ab4d0510bcd21beec78e8521118d55734a1b9fd3c065d3</citedby><cites>FETCH-LOGICAL-c315t-f6fd39002a03e032bf3ab4d0510bcd21beec78e8521118d55734a1b9fd3c065d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Alekseev, A.</creatorcontrib><creatorcontrib>Meinrenken, E.</creatorcontrib><title>On the Kashiwara–Vergne conjecture</title><title>Inventiones mathematicae</title><description>Let G be a connected Lie group, with Lie algebra (ProQuest: Formulae and/or non-USASCII text omitted; see image) . In 1977, Duflo constructed a homomorphism of (ProQuest: Formulae and/or non-USASCII text omitted; see image) -modules (ProQuest: Formulae and/or non-USASCII text omitted; see image) , which restricts to an algebra isomorphism on invariants. Kashiwara and Vergne (1978) proposed a conjecture on the Campbell-Hausdorff series, which (among other things) extends the Duflo theorem to germs of bi-invariant distributions on the Lie group G. The main results of the present paper are as follows. (1) Using a recent result of Torossian (2002), we establish the Kashiwara-Vergne conjecture for any Lie group G. (2) We give a reformulation of the Kashiwara-Vergne property in terms of Lie algebra cohomology. As a direct corollary, one obtains the algebra isomorphism (ProQuest: Formulae and/or non-USASCII text omitted; see image) , as well as a more general statement for distributions. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Lie groups</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAUhi0EEqXwAGwRYjWc40scj6iCgqjUBVgtxzmhjSApdirExjvwhjwJrsr0D_9N-hg7R7hCAHOdAIQQHEBzUFXJ1QGboJKCo7DmkE2yDdxahGN2klIHkE0jJuxy2RfjiopHn1brTx_97_fPC8XXnoow9B2FcRvplB21_i3R2b9O2fPd7dPsni-W84fZzYIHiXrkbdk20uYnD5JAirqVvlYNaIQ6NAJromAqqrRAxKrR2kjlsba5FaDUjZyyi_3uJg4fW0qj64Zt7POlsyhQGatMDuE-FOKQUqTWbeL63ccvh-B2LNyehcss3I6FU_IPHTlQtg</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Alekseev, A.</creator><creator>Meinrenken, E.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200606</creationdate><title>On the Kashiwara–Vergne conjecture</title><author>Alekseev, A. ; Meinrenken, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-f6fd39002a03e032bf3ab4d0510bcd21beec78e8521118d55734a1b9fd3c065d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Lie groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alekseev, A.</creatorcontrib><creatorcontrib>Meinrenken, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alekseev, A.</au><au>Meinrenken, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Kashiwara–Vergne conjecture</atitle><jtitle>Inventiones mathematicae</jtitle><date>2006-06</date><risdate>2006</risdate><volume>164</volume><issue>3</issue><spage>615</spage><epage>634</epage><pages>615-634</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>Let G be a connected Lie group, with Lie algebra (ProQuest: Formulae and/or non-USASCII text omitted; see image) . In 1977, Duflo constructed a homomorphism of (ProQuest: Formulae and/or non-USASCII text omitted; see image) -modules (ProQuest: Formulae and/or non-USASCII text omitted; see image) , which restricts to an algebra isomorphism on invariants. Kashiwara and Vergne (1978) proposed a conjecture on the Campbell-Hausdorff series, which (among other things) extends the Duflo theorem to germs of bi-invariant distributions on the Lie group G. The main results of the present paper are as follows. (1) Using a recent result of Torossian (2002), we establish the Kashiwara-Vergne conjecture for any Lie group G. (2) We give a reformulation of the Kashiwara-Vergne property in terms of Lie algebra cohomology. As a direct corollary, one obtains the algebra isomorphism (ProQuest: Formulae and/or non-USASCII text omitted; see image) , as well as a more general statement for distributions. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-005-0486-4</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2006-06, Vol.164 (3), p.615-634 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_journals_912147947 |
source | Springer Nature |
subjects | Algebra Lie groups |
title | On the Kashiwara–Vergne conjecture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Kashiwara%E2%80%93Vergne%20conjecture&rft.jtitle=Inventiones%20mathematicae&rft.au=Alekseev,%20A.&rft.date=2006-06&rft.volume=164&rft.issue=3&rft.spage=615&rft.epage=634&rft.pages=615-634&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-005-0486-4&rft_dat=%3Cproquest_cross%3E2544227571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-f6fd39002a03e032bf3ab4d0510bcd21beec78e8521118d55734a1b9fd3c065d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912147947&rft_id=info:pmid/&rfr_iscdi=true |