Loading…

Adder Designs and Analyses for Quantum-Dot Cellular Automata

Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2007-05, Vol.6 (3), p.374-383
Main Authors: Cho, H., Swartzlander, E.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2007.894839