Loading…

Adder Designs and Analyses for Quantum-Dot Cellular Automata

Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2007-05, Vol.6 (3), p.374-383
Main Authors: Cho, H., Swartzlander, E.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073
cites cdi_FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073
container_end_page 383
container_issue 3
container_start_page 374
container_title IEEE transactions on nanotechnology
container_volume 6
creator Cho, H.
Swartzlander, E.E.
description Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay
doi_str_mv 10.1109/TNANO.2007.894839
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_912220746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4200723</ieee_id><sourcerecordid>889376467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AiCs7pBxAvRVBPnXltEvBSNt9gbAgTvIW0SaSjL5q0h317UzsUPHhKIL_nT55_FJ1DMIMQiNvNKlutZwgANuOCcCwOogkUBCYAcHoY7hSnCUT07Tg68X4LAGQp5ZPoLtPauHhhfPne-Fg1Os4aVe288bFtXfzSq6br62TRdvHcVFVfKRdnfdfWqlOn0ZFVlTdn-3MavT7cb-ZPyXL9-DzPlkmBOe0Syq0ueKpTC5lmkAumcmwB4YZZAxiyoiDM8DwAm-eKIESRLrSBKcc6BwxPo5sx98O1n73xnaxLX4TfqMa0vZecC8xSkg7y-l-JAAWYCxHg5R-4bXsXNvdSQIQQYCQNCI6ocK33zlj54cpauZ2EQA61y-_a5VC7HGsPM1f7YOULVVmnmqL0v4OcccgEDe5idKUx5ueZDFEI4y-wlIo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912220746</pqid></control><display><type>article</type><title>Adder Designs and Analyses for Quantum-Dot Cellular Automata</title><source>IEEE Xplore (Online service)</source><creator>Cho, H. ; Swartzlander, E.E.</creator><creatorcontrib>Cho, H. ; Swartzlander, E.E.</creatorcontrib><description>Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2007.894839</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adder ; Adders ; Applied sciences ; Automata. Abstract machines. Turing machines ; carry lookahead adder ; Cellular automata ; Circuit analysis ; Circuit design ; Circuit properties ; Circuit synthesis ; Circuits ; Computer science; control theory; systems ; conditional sum adder ; Devices ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy consumption ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; layout ; logic design ; Molecular electronics, nanoelectronics ; Nanostructure ; Nanostructured materials ; Nanotechnology ; Quantum cellular automata ; Quantum dots ; quantum-dot cellular automata (QCA) ; ripple carry adder ; Ripples ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; simulation ; Theoretical computing ; Wires</subject><ispartof>IEEE transactions on nanotechnology, 2007-05, Vol.6 (3), p.374-383</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073</citedby><cites>FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4200723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18781795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, H.</creatorcontrib><creatorcontrib>Swartzlander, E.E.</creatorcontrib><title>Adder Designs and Analyses for Quantum-Dot Cellular Automata</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay</description><subject>Adder</subject><subject>Adders</subject><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>carry lookahead adder</subject><subject>Cellular automata</subject><subject>Circuit analysis</subject><subject>Circuit design</subject><subject>Circuit properties</subject><subject>Circuit synthesis</subject><subject>Circuits</subject><subject>Computer science; control theory; systems</subject><subject>conditional sum adder</subject><subject>Devices</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>layout</subject><subject>logic design</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Quantum cellular automata</subject><subject>Quantum dots</subject><subject>quantum-dot cellular automata (QCA)</subject><subject>ripple carry adder</subject><subject>Ripples</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>simulation</subject><subject>Theoretical computing</subject><subject>Wires</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AiCs7pBxAvRVBPnXltEvBSNt9gbAgTvIW0SaSjL5q0h317UzsUPHhKIL_nT55_FJ1DMIMQiNvNKlutZwgANuOCcCwOogkUBCYAcHoY7hSnCUT07Tg68X4LAGQp5ZPoLtPauHhhfPne-Fg1Os4aVe288bFtXfzSq6br62TRdvHcVFVfKRdnfdfWqlOn0ZFVlTdn-3MavT7cb-ZPyXL9-DzPlkmBOe0Syq0ueKpTC5lmkAumcmwB4YZZAxiyoiDM8DwAm-eKIESRLrSBKcc6BwxPo5sx98O1n73xnaxLX4TfqMa0vZecC8xSkg7y-l-JAAWYCxHg5R-4bXsXNvdSQIQQYCQNCI6ocK33zlj54cpauZ2EQA61y-_a5VC7HGsPM1f7YOULVVmnmqL0v4OcccgEDe5idKUx5ueZDFEI4y-wlIo1</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Cho, H.</creator><creator>Swartzlander, E.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20070501</creationdate><title>Adder Designs and Analyses for Quantum-Dot Cellular Automata</title><author>Cho, H. ; Swartzlander, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adder</topic><topic>Adders</topic><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>carry lookahead adder</topic><topic>Cellular automata</topic><topic>Circuit analysis</topic><topic>Circuit design</topic><topic>Circuit properties</topic><topic>Circuit synthesis</topic><topic>Circuits</topic><topic>Computer science; control theory; systems</topic><topic>conditional sum adder</topic><topic>Devices</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>layout</topic><topic>logic design</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Quantum cellular automata</topic><topic>Quantum dots</topic><topic>quantum-dot cellular automata (QCA)</topic><topic>ripple carry adder</topic><topic>Ripples</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>simulation</topic><topic>Theoretical computing</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, H.</creatorcontrib><creatorcontrib>Swartzlander, E.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, H.</au><au>Swartzlander, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adder Designs and Analyses for Quantum-Dot Cellular Automata</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>6</volume><issue>3</issue><spage>374</spage><epage>383</epage><pages>374-383</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2007.894839</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2007-05, Vol.6 (3), p.374-383
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_journals_912220746
source IEEE Xplore (Online service)
subjects Adder
Adders
Applied sciences
Automata. Abstract machines. Turing machines
carry lookahead adder
Cellular automata
Circuit analysis
Circuit design
Circuit properties
Circuit synthesis
Circuits
Computer science
control theory
systems
conditional sum adder
Devices
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Energy consumption
Exact sciences and technology
Integrated circuits
Integrated circuits by function (including memories and processors)
layout
logic design
Molecular electronics, nanoelectronics
Nanostructure
Nanostructured materials
Nanotechnology
Quantum cellular automata
Quantum dots
quantum-dot cellular automata (QCA)
ripple carry adder
Ripples
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
simulation
Theoretical computing
Wires
title Adder Designs and Analyses for Quantum-Dot Cellular Automata
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adder%20Designs%20and%20Analyses%20for%20Quantum-Dot%20Cellular%20Automata&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Cho,%20H.&rft.date=2007-05-01&rft.volume=6&rft.issue=3&rft.spage=374&rft.epage=383&rft.pages=374-383&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2007.894839&rft_dat=%3Cproquest_pasca%3E889376467%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912220746&rft_id=info:pmid/&rft_ieee_id=4200723&rfr_iscdi=true