Loading…
Adder Designs and Analyses for Quantum-Dot Cellular Automata
Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the...
Saved in:
Published in: | IEEE transactions on nanotechnology 2007-05, Vol.6 (3), p.374-383 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073 |
container_end_page | 383 |
container_issue | 3 |
container_start_page | 374 |
container_title | IEEE transactions on nanotechnology |
container_volume | 6 |
creator | Cho, H. Swartzlander, E.E. |
description | Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay |
doi_str_mv | 10.1109/TNANO.2007.894839 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_912220746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4200723</ieee_id><sourcerecordid>889376467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AiCs7pBxAvRVBPnXltEvBSNt9gbAgTvIW0SaSjL5q0h317UzsUPHhKIL_nT55_FJ1DMIMQiNvNKlutZwgANuOCcCwOogkUBCYAcHoY7hSnCUT07Tg68X4LAGQp5ZPoLtPauHhhfPne-Fg1Os4aVe288bFtXfzSq6br62TRdvHcVFVfKRdnfdfWqlOn0ZFVlTdn-3MavT7cb-ZPyXL9-DzPlkmBOe0Syq0ueKpTC5lmkAumcmwB4YZZAxiyoiDM8DwAm-eKIESRLrSBKcc6BwxPo5sx98O1n73xnaxLX4TfqMa0vZecC8xSkg7y-l-JAAWYCxHg5R-4bXsXNvdSQIQQYCQNCI6ocK33zlj54cpauZ2EQA61y-_a5VC7HGsPM1f7YOULVVmnmqL0v4OcccgEDe5idKUx5ueZDFEI4y-wlIo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912220746</pqid></control><display><type>article</type><title>Adder Designs and Analyses for Quantum-Dot Cellular Automata</title><source>IEEE Xplore (Online service)</source><creator>Cho, H. ; Swartzlander, E.E.</creator><creatorcontrib>Cho, H. ; Swartzlander, E.E.</creatorcontrib><description>Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2007.894839</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adder ; Adders ; Applied sciences ; Automata. Abstract machines. Turing machines ; carry lookahead adder ; Cellular automata ; Circuit analysis ; Circuit design ; Circuit properties ; Circuit synthesis ; Circuits ; Computer science; control theory; systems ; conditional sum adder ; Devices ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy consumption ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; layout ; logic design ; Molecular electronics, nanoelectronics ; Nanostructure ; Nanostructured materials ; Nanotechnology ; Quantum cellular automata ; Quantum dots ; quantum-dot cellular automata (QCA) ; ripple carry adder ; Ripples ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; simulation ; Theoretical computing ; Wires</subject><ispartof>IEEE transactions on nanotechnology, 2007-05, Vol.6 (3), p.374-383</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073</citedby><cites>FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4200723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18781795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, H.</creatorcontrib><creatorcontrib>Swartzlander, E.E.</creatorcontrib><title>Adder Designs and Analyses for Quantum-Dot Cellular Automata</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay</description><subject>Adder</subject><subject>Adders</subject><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>carry lookahead adder</subject><subject>Cellular automata</subject><subject>Circuit analysis</subject><subject>Circuit design</subject><subject>Circuit properties</subject><subject>Circuit synthesis</subject><subject>Circuits</subject><subject>Computer science; control theory; systems</subject><subject>conditional sum adder</subject><subject>Devices</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>layout</subject><subject>logic design</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Quantum cellular automata</subject><subject>Quantum dots</subject><subject>quantum-dot cellular automata (QCA)</subject><subject>ripple carry adder</subject><subject>Ripples</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>simulation</subject><subject>Theoretical computing</subject><subject>Wires</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AiCs7pBxAvRVBPnXltEvBSNt9gbAgTvIW0SaSjL5q0h317UzsUPHhKIL_nT55_FJ1DMIMQiNvNKlutZwgANuOCcCwOogkUBCYAcHoY7hSnCUT07Tg68X4LAGQp5ZPoLtPauHhhfPne-Fg1Os4aVe288bFtXfzSq6br62TRdvHcVFVfKRdnfdfWqlOn0ZFVlTdn-3MavT7cb-ZPyXL9-DzPlkmBOe0Syq0ueKpTC5lmkAumcmwB4YZZAxiyoiDM8DwAm-eKIESRLrSBKcc6BwxPo5sx98O1n73xnaxLX4TfqMa0vZecC8xSkg7y-l-JAAWYCxHg5R-4bXsXNvdSQIQQYCQNCI6ocK33zlj54cpauZ2EQA61y-_a5VC7HGsPM1f7YOULVVmnmqL0v4OcccgEDe5idKUx5ueZDFEI4y-wlIo1</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Cho, H.</creator><creator>Swartzlander, E.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20070501</creationdate><title>Adder Designs and Analyses for Quantum-Dot Cellular Automata</title><author>Cho, H. ; Swartzlander, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adder</topic><topic>Adders</topic><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>carry lookahead adder</topic><topic>Cellular automata</topic><topic>Circuit analysis</topic><topic>Circuit design</topic><topic>Circuit properties</topic><topic>Circuit synthesis</topic><topic>Circuits</topic><topic>Computer science; control theory; systems</topic><topic>conditional sum adder</topic><topic>Devices</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>layout</topic><topic>logic design</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Quantum cellular automata</topic><topic>Quantum dots</topic><topic>quantum-dot cellular automata (QCA)</topic><topic>ripple carry adder</topic><topic>Ripples</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>simulation</topic><topic>Theoretical computing</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, H.</creatorcontrib><creatorcontrib>Swartzlander, E.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, H.</au><au>Swartzlander, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adder Designs and Analyses for Quantum-Dot Cellular Automata</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>6</volume><issue>3</issue><spage>374</spage><epage>383</epage><pages>374-383</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2007.894839</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2007-05, Vol.6 (3), p.374-383 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_proquest_journals_912220746 |
source | IEEE Xplore (Online service) |
subjects | Adder Adders Applied sciences Automata. Abstract machines. Turing machines carry lookahead adder Cellular automata Circuit analysis Circuit design Circuit properties Circuit synthesis Circuits Computer science control theory systems conditional sum adder Devices Digital circuits Electric, optical and optoelectronic circuits Electronic circuits Electronics Energy consumption Exact sciences and technology Integrated circuits Integrated circuits by function (including memories and processors) layout logic design Molecular electronics, nanoelectronics Nanostructure Nanostructured materials Nanotechnology Quantum cellular automata Quantum dots quantum-dot cellular automata (QCA) ripple carry adder Ripples Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices simulation Theoretical computing Wires |
title | Adder Designs and Analyses for Quantum-Dot Cellular Automata |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adder%20Designs%20and%20Analyses%20for%20Quantum-Dot%20Cellular%20Automata&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Cho,%20H.&rft.date=2007-05-01&rft.volume=6&rft.issue=3&rft.spage=374&rft.epage=383&rft.pages=374-383&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2007.894839&rft_dat=%3Cproquest_pasca%3E889376467%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-58fdc86d6f17d71897ab3f048e7fe072f9c47e8bd6ffbba42252dcde1683db073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912220746&rft_id=info:pmid/&rft_ieee_id=4200723&rfr_iscdi=true |