Loading…

Radiation Characteristics of a Microstrip Patch Over an Electromagnetic Bandgap Surface

Radiation characteristics of a microstrip patch over an electromagnetic bandgap (EBG) substrate are investigated in this paper. This paper focuses on a mushroom-type EBG structure, although the design is applicable to various EBG profiles. The patch antenna is modeled as a half-wavelength resonator...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2007-06, Vol.55 (6), p.1691-1697
Main Authors: Jing Liang, Yang, H-Y.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radiation characteristics of a microstrip patch over an electromagnetic bandgap (EBG) substrate are investigated in this paper. This paper focuses on a mushroom-type EBG structure, although the design is applicable to various EBG profiles. The patch antenna is modeled as a half-wavelength resonator of an EBG-loaded microstrip transmission line. Through a full-wave eigenmode analysis of a microstrip line on an EBG structure, it is found that the resonant patch will not see a high-impedance surface (HIS), but rather it is coupled to the EBG structure as an open cavity resonator. Due to strong near-field coupling, the propagation characteristics including the bandgap zones are very different with or without the patch cover. The use of an EBG structure as a bulk material for antennas is seen inappropriate. The EBG surface is found to have the effect of reducing the patch resonant length and bandwidth. A prototype of a microstrip line proximity fed to a patch antenna is fabricated and tested to verify the analysis.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2007.898633