Loading…
On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics
A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2009-10, Vol.57 (10), p.3378-3381 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported. |
---|---|
ISSN: | 0018-926X 1558-2221 1558-2221 |
DOI: | 10.1109/TAP.2009.2029383 |