Loading…

Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COSMIC/FORMOSAT-3 and Rayleigh lidar observations

This study utilizes COSMIC satellite and lidar observations to examine the spatial and temporal variability of stratospheric temperature at a number of scales. The geographic variation of the RMS temperature difference between pairs of COSMIC profiles shows a strong correspondence to previous climat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres 2010-10, Vol.115 (D19), p.n/a
Main Authors: McDonald, Adrian J., Tan, Bo, Chu, Xinzhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4127-a50fae5e5f88daabbdcf5343c55f4bfeb5df89f39b40f2a18b01f0c9b13b1883
cites cdi_FETCH-LOGICAL-c4127-a50fae5e5f88daabbdcf5343c55f4bfeb5df89f39b40f2a18b01f0c9b13b1883
container_end_page n/a
container_issue D19
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 115
creator McDonald, Adrian J.
Tan, Bo
Chu, Xinzhao
description This study utilizes COSMIC satellite and lidar observations to examine the spatial and temporal variability of stratospheric temperature at a number of scales. The geographic variation of the RMS temperature difference between pairs of COSMIC profiles shows a strong correspondence to previous climatologies of gravity wave activity. In addition, the second‐order structure functions we form can be directly related to the horizontal wave number power spectrum. These structure functions for different seasons and altitudes display a close correspondence to previous studies which examined the form of the horizontal wave number power spectra. Our analysis suggests that the wavefield may be particularly affected by changes in the zonal wind between 15 and 25 km and that the wind reversal between tropospheric westerlies and stratospheric easterlies in summer strongly contributes to critical‐level filtering. Inspection also shows that longer horizontal wavelength waves are preferentially removed in this region. At low altitudes, the variability related to gravity waves shows a remarkably similar pattern as a function of horizontal separation in both hemispheres but is quite different at higher altitudes. Such contrast implies that seasonal variability at higher altitudes may be dominated by changes in propagation conditions in the lower stratosphere. Examination of temperature variability as a function of spatial and temporal separation indicates that gravity wave activity dominates stratospheric temperature variability, and this has impacts on validation study site selection. For example, validation exercises in the summer hemisphere stratosphere are likely to be less affected by geophysical variability than those in the winter hemisphere.
doi_str_mv 10.1029/2009JD013658
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_912732444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547793371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4127-a50fae5e5f88daabbdcf5343c55f4bfeb5df89f39b40f2a18b01f0c9b13b1883</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhleoSETArT_AqtRbt_hzP44oKSkoNNISld6s8a5NTDfrrb0J3X_Cz61DEOLUuYxm9LzPSJMkHwn-SjAtLyjG5c0ME5aJ4iiZUCKylFJMPyQTTHiRYkrzk-Q8hEcci4uMYzJJnivXauQMevCws8OInmCnA7IdGtYahR4GCy2CrkGD3vTOx2EH3oKy7Z6OwTB4GFzo19rb-oXScbH1Gm00hNgbpEY0Xd7dXk8vrpbV7fLucpWyF2cFY6vtwxq1tgGPnAra7-JJ14Wz5NhAG_T5az9NVlffVtPv6WI5v55eLtKaE5qnILABLbQwRdEAKNXURjDOaiEMV0Yr0ZiiNKxUHBsKpFCYGFyXijBFioKdJp8O2t67P1sdBvnotr6LF2UZ_YxyziP05QDV3oXgtZG9txvwoyRY7p8v3z8_4p9fnRBqaI2HrrbhLUMZp4yUe44duCfb6vG_Tnkzr2YkYziPqfSQsmHQf99S4H_LLGe5kPc_5vL-F11UZEbkT_YPHMqj7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912732444</pqid></control><display><type>article</type><title>Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COSMIC/FORMOSAT-3 and Rayleigh lidar observations</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Library</source><creator>McDonald, Adrian J. ; Tan, Bo ; Chu, Xinzhao</creator><creatorcontrib>McDonald, Adrian J. ; Tan, Bo ; Chu, Xinzhao</creatorcontrib><description>This study utilizes COSMIC satellite and lidar observations to examine the spatial and temporal variability of stratospheric temperature at a number of scales. The geographic variation of the RMS temperature difference between pairs of COSMIC profiles shows a strong correspondence to previous climatologies of gravity wave activity. In addition, the second‐order structure functions we form can be directly related to the horizontal wave number power spectrum. These structure functions for different seasons and altitudes display a close correspondence to previous studies which examined the form of the horizontal wave number power spectra. Our analysis suggests that the wavefield may be particularly affected by changes in the zonal wind between 15 and 25 km and that the wind reversal between tropospheric westerlies and stratospheric easterlies in summer strongly contributes to critical‐level filtering. Inspection also shows that longer horizontal wavelength waves are preferentially removed in this region. At low altitudes, the variability related to gravity waves shows a remarkably similar pattern as a function of horizontal separation in both hemispheres but is quite different at higher altitudes. Such contrast implies that seasonal variability at higher altitudes may be dominated by changes in propagation conditions in the lower stratosphere. Examination of temperature variability as a function of spatial and temporal separation indicates that gravity wave activity dominates stratospheric temperature variability, and this has impacts on validation study site selection. For example, validation exercises in the summer hemisphere stratosphere are likely to be less affected by geophysical variability than those in the winter hemisphere.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2009JD013658</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; Gravity waves ; Lidar ; Radio ; radio occultation ; Remote sensing ; Seasonal variations ; Site selection ; Stratosphere ; Summer ; Variability ; Wind</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2010-10, Vol.115 (D19), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4127-a50fae5e5f88daabbdcf5343c55f4bfeb5df89f39b40f2a18b01f0c9b13b1883</citedby><cites>FETCH-LOGICAL-c4127-a50fae5e5f88daabbdcf5343c55f4bfeb5df89f39b40f2a18b01f0c9b13b1883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JD013658$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JD013658$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23423198$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McDonald, Adrian J.</creatorcontrib><creatorcontrib>Tan, Bo</creatorcontrib><creatorcontrib>Chu, Xinzhao</creatorcontrib><title>Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COSMIC/FORMOSAT-3 and Rayleigh lidar observations</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>This study utilizes COSMIC satellite and lidar observations to examine the spatial and temporal variability of stratospheric temperature at a number of scales. The geographic variation of the RMS temperature difference between pairs of COSMIC profiles shows a strong correspondence to previous climatologies of gravity wave activity. In addition, the second‐order structure functions we form can be directly related to the horizontal wave number power spectrum. These structure functions for different seasons and altitudes display a close correspondence to previous studies which examined the form of the horizontal wave number power spectra. Our analysis suggests that the wavefield may be particularly affected by changes in the zonal wind between 15 and 25 km and that the wind reversal between tropospheric westerlies and stratospheric easterlies in summer strongly contributes to critical‐level filtering. Inspection also shows that longer horizontal wavelength waves are preferentially removed in this region. At low altitudes, the variability related to gravity waves shows a remarkably similar pattern as a function of horizontal separation in both hemispheres but is quite different at higher altitudes. Such contrast implies that seasonal variability at higher altitudes may be dominated by changes in propagation conditions in the lower stratosphere. Examination of temperature variability as a function of spatial and temporal separation indicates that gravity wave activity dominates stratospheric temperature variability, and this has impacts on validation study site selection. For example, validation exercises in the summer hemisphere stratosphere are likely to be less affected by geophysical variability than those in the winter hemisphere.</description><subject>Atmospheric sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Gravity waves</subject><subject>Lidar</subject><subject>Radio</subject><subject>radio occultation</subject><subject>Remote sensing</subject><subject>Seasonal variations</subject><subject>Site selection</subject><subject>Stratosphere</subject><subject>Summer</subject><subject>Variability</subject><subject>Wind</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PGzEQhleoSETArT_AqtRbt_hzP44oKSkoNNISld6s8a5NTDfrrb0J3X_Cz61DEOLUuYxm9LzPSJMkHwn-SjAtLyjG5c0ME5aJ4iiZUCKylFJMPyQTTHiRYkrzk-Q8hEcci4uMYzJJnivXauQMevCws8OInmCnA7IdGtYahR4GCy2CrkGD3vTOx2EH3oKy7Z6OwTB4GFzo19rb-oXScbH1Gm00hNgbpEY0Xd7dXk8vrpbV7fLucpWyF2cFY6vtwxq1tgGPnAra7-JJ14Wz5NhAG_T5az9NVlffVtPv6WI5v55eLtKaE5qnILABLbQwRdEAKNXURjDOaiEMV0Yr0ZiiNKxUHBsKpFCYGFyXijBFioKdJp8O2t67P1sdBvnotr6LF2UZ_YxyziP05QDV3oXgtZG9txvwoyRY7p8v3z8_4p9fnRBqaI2HrrbhLUMZp4yUe44duCfb6vG_Tnkzr2YkYziPqfSQsmHQf99S4H_LLGe5kPc_5vL-F11UZEbkT_YPHMqj7Q</recordid><startdate>20101016</startdate><enddate>20101016</enddate><creator>McDonald, Adrian J.</creator><creator>Tan, Bo</creator><creator>Chu, Xinzhao</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20101016</creationdate><title>Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COSMIC/FORMOSAT-3 and Rayleigh lidar observations</title><author>McDonald, Adrian J. ; Tan, Bo ; Chu, Xinzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4127-a50fae5e5f88daabbdcf5343c55f4bfeb5df89f39b40f2a18b01f0c9b13b1883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atmospheric sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Gravity waves</topic><topic>Lidar</topic><topic>Radio</topic><topic>radio occultation</topic><topic>Remote sensing</topic><topic>Seasonal variations</topic><topic>Site selection</topic><topic>Stratosphere</topic><topic>Summer</topic><topic>Variability</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonald, Adrian J.</creatorcontrib><creatorcontrib>Tan, Bo</creatorcontrib><creatorcontrib>Chu, Xinzhao</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonald, Adrian J.</au><au>Tan, Bo</au><au>Chu, Xinzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COSMIC/FORMOSAT-3 and Rayleigh lidar observations</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-10-16</date><risdate>2010</risdate><volume>115</volume><issue>D19</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>This study utilizes COSMIC satellite and lidar observations to examine the spatial and temporal variability of stratospheric temperature at a number of scales. The geographic variation of the RMS temperature difference between pairs of COSMIC profiles shows a strong correspondence to previous climatologies of gravity wave activity. In addition, the second‐order structure functions we form can be directly related to the horizontal wave number power spectrum. These structure functions for different seasons and altitudes display a close correspondence to previous studies which examined the form of the horizontal wave number power spectra. Our analysis suggests that the wavefield may be particularly affected by changes in the zonal wind between 15 and 25 km and that the wind reversal between tropospheric westerlies and stratospheric easterlies in summer strongly contributes to critical‐level filtering. Inspection also shows that longer horizontal wavelength waves are preferentially removed in this region. At low altitudes, the variability related to gravity waves shows a remarkably similar pattern as a function of horizontal separation in both hemispheres but is quite different at higher altitudes. Such contrast implies that seasonal variability at higher altitudes may be dominated by changes in propagation conditions in the lower stratosphere. Examination of temperature variability as a function of spatial and temporal separation indicates that gravity wave activity dominates stratospheric temperature variability, and this has impacts on validation study site selection. For example, validation exercises in the summer hemisphere stratosphere are likely to be less affected by geophysical variability than those in the winter hemisphere.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JD013658</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2010-10, Vol.115 (D19), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_journals_912732444
source Wiley; Wiley-Blackwell AGU Digital Library
subjects Atmospheric sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
Gravity waves
Lidar
Radio
radio occultation
Remote sensing
Seasonal variations
Site selection
Stratosphere
Summer
Variability
Wind
title Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COSMIC/FORMOSAT-3 and Rayleigh lidar observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20gravity%20waves%20in%20the%20spatial%20and%20temporal%20variability%20of%20stratospheric%20temperature%20measured%20by%20COSMIC/FORMOSAT-3%20and%20Rayleigh%20lidar%20observations&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=McDonald,%20Adrian%20J.&rft.date=2010-10-16&rft.volume=115&rft.issue=D19&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JD013658&rft_dat=%3Cproquest_cross%3E2547793371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4127-a50fae5e5f88daabbdcf5343c55f4bfeb5df89f39b40f2a18b01f0c9b13b1883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912732444&rft_id=info:pmid/&rfr_iscdi=true