Loading…

Airborne lidar measurements of ozone flux downwind of Houston and Dallas

We use airborne lidar measurements of ozone collected during the Texas Air Quality Study (TexAQS) 2000 and TexAQS 2006 field campaigns to compute the horizontal flux of ozone downwind of the Houston and Dallas/Fort Worth metropolitan areas. Fluxes are computed for each aircraft transect by integrati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres 2010-10, Vol.115 (D20), p.1R-n/a
Main Authors: Senff, C. J., Alvarez II, R. J., Hardesty, R. M., Banta, R. M., Langford, A. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We use airborne lidar measurements of ozone collected during the Texas Air Quality Study (TexAQS) 2000 and TexAQS 2006 field campaigns to compute the horizontal flux of ozone downwind of the Houston and Dallas/Fort Worth metropolitan areas. Fluxes are computed for each aircraft transect by integrating excess ozone (plume ozone minus background ozone) in the urban plumes and multiplying the result by the horizontal wind speed provided by radar wind profilers. In addition, we use the lidar data to estimate ozone production rates and ozone enhancements in the Houston and Dallas/Fort Worth plumes. We found that the average horizontal flux of ozone emanating from the Houston area based on data from six research flights was 3.2 · 1026 molecules per second. This was significantly higher than the flux measured downwind of Dallas/Fort Worth during a single flight. The Houston fluxes exhibited a strong dependence on wind direction. Under southerly or northerly flow, ozone fluxes were about twice as large as under westerly or easterly flow conditions. We estimate that a day's worth of export of ozone from the Houston area could raise regional background ozone by about 10 ppbv over a 40,000 km2 area. This has important ramifications for air quality in communities downwind of Houston as it could raise background ozone levels enough that regions with little or no local pollution sources of their own may violate the federally mandated ozone standard.
ISSN:0148-0227
2169-897X
2156-2202
2169-8996
DOI:10.1029/2009JD013689