Loading…

Design of SIW Cavity-Backed Circular-Polarized Antennas Using Two Different Feeding Transitions

Two circular-polarized circular patch antennas which have novel feeding structures such as a substrate integrated waveguide (SIW), a cavity-backed resonator and two different feeding transitions, are proposed and experimentally investigated in terms of electrical performances, including reflection c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2011-04, Vol.59 (4), p.1398-1403
Main Authors: Dong-Yeon Kim, Lee, J W, Lee, T K, Choon Sik Cho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two circular-polarized circular patch antennas which have novel feeding structures such as a substrate integrated waveguide (SIW), a cavity-backed resonator and two different feeding transitions, are proposed and experimentally investigated in terms of electrical performances, including reflection coefficients, optimized parameter values, circular polarized antenna gain, axial ratios and radiation patterns. By inserting asymmetrical inductive via arrays into the interface region between the circular patch and SIW feeding structure, it is found that an enhancement of input impedance bandwidth has been achieved. In addition, in order to check the effects of feeding transition types on the electrical performances of the main radiator, two different feeding transitions, namely microstrip-to-SIW and coax-to-SIW, have been studied by considering reflection coefficients, gain, axial ratios and radiation patterns. As a result, it is experimentally proved that a broadband impedance bandwidth of 17.32% and 14.42% under the criteria of less than VSWR 2:1 and 1.5:1, respectively, have been obtained and an RHCP axial ratio of 2.34% with a maximum gain of 7.79 dBic has been accomplished by using the proposed antenna with coax-to-SIW transition operating at the X-band of 10 GHz center frequency.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2011.2109675