Loading…

Design of SIW Cavity-Backed Circular-Polarized Antennas Using Two Different Feeding Transitions

Two circular-polarized circular patch antennas which have novel feeding structures such as a substrate integrated waveguide (SIW), a cavity-backed resonator and two different feeding transitions, are proposed and experimentally investigated in terms of electrical performances, including reflection c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2011-04, Vol.59 (4), p.1398-1403
Main Authors: Dong-Yeon Kim, Lee, J W, Lee, T K, Choon Sik Cho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-c8e18959bd1a2939a8e557ded9ff26f59371b0f824966eb99b4778c052f818b73
cites cdi_FETCH-LOGICAL-c352t-c8e18959bd1a2939a8e557ded9ff26f59371b0f824966eb99b4778c052f818b73
container_end_page 1403
container_issue 4
container_start_page 1398
container_title IEEE transactions on antennas and propagation
container_volume 59
creator Dong-Yeon Kim
Lee, J W
Lee, T K
Choon Sik Cho
description Two circular-polarized circular patch antennas which have novel feeding structures such as a substrate integrated waveguide (SIW), a cavity-backed resonator and two different feeding transitions, are proposed and experimentally investigated in terms of electrical performances, including reflection coefficients, optimized parameter values, circular polarized antenna gain, axial ratios and radiation patterns. By inserting asymmetrical inductive via arrays into the interface region between the circular patch and SIW feeding structure, it is found that an enhancement of input impedance bandwidth has been achieved. In addition, in order to check the effects of feeding transition types on the electrical performances of the main radiator, two different feeding transitions, namely microstrip-to-SIW and coax-to-SIW, have been studied by considering reflection coefficients, gain, axial ratios and radiation patterns. As a result, it is experimentally proved that a broadband impedance bandwidth of 17.32% and 14.42% under the criteria of less than VSWR 2:1 and 1.5:1, respectively, have been obtained and an RHCP axial ratio of 2.34% with a maximum gain of 7.79 dBic has been accomplished by using the proposed antenna with coax-to-SIW transition operating at the X-band of 10 GHz center frequency.
doi_str_mv 10.1109/TAP.2011.2109675
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_914301099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5704559</ieee_id><sourcerecordid>875016102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c8e18959bd1a2939a8e557ded9ff26f59371b0f824966eb99b4778c052f818b73</originalsourceid><addsrcrecordid>eNpdkN9LHDEQgEOp0Kv6XvBlKRSf9sxkk03yeD1_gqDQE_sWstmJRNesTfZa9K9v9A4ffEmYmW-GmY-Qb0DnAFQfrRbXc0YB5qxErRSfyAyEUDVjDD6TGaWgas3a31_I15zvS8gV5zNijjGHu1iNvvp1cVst7d8wPdc_rXvAvlqG5NaDTfX1WN7wUlKLOGGMNlc3OcS7avVvrI6D95gwTtUpYv-WTTbmMIUx5j2y4-2QcX_775Kb05PV8ry-vDq7WC4ua9cINtVOISgtdNeDZbrRVqEQssdee89aL3QjoaNeMa7bFjutOy6lclQwr0B1stklh5u5T2n8s8Y8mceQHQ6DjTius1FSUGiBskJ-_0Dej-sUy3JGA29o0acLRDeQS2POCb15SuHRpmcD1Lz6NsW3efVttr5Ly4_tXJudHXxx4EJ-72McqGglL9zBhguI-F4WknJRzvwPOnOHZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914301099</pqid></control><display><type>article</type><title>Design of SIW Cavity-Backed Circular-Polarized Antennas Using Two Different Feeding Transitions</title><source>IEEE Xplore (Online service)</source><creator>Dong-Yeon Kim ; Lee, J W ; Lee, T K ; Choon Sik Cho</creator><creatorcontrib>Dong-Yeon Kim ; Lee, J W ; Lee, T K ; Choon Sik Cho</creatorcontrib><description>Two circular-polarized circular patch antennas which have novel feeding structures such as a substrate integrated waveguide (SIW), a cavity-backed resonator and two different feeding transitions, are proposed and experimentally investigated in terms of electrical performances, including reflection coefficients, optimized parameter values, circular polarized antenna gain, axial ratios and radiation patterns. By inserting asymmetrical inductive via arrays into the interface region between the circular patch and SIW feeding structure, it is found that an enhancement of input impedance bandwidth has been achieved. In addition, in order to check the effects of feeding transition types on the electrical performances of the main radiator, two different feeding transitions, namely microstrip-to-SIW and coax-to-SIW, have been studied by considering reflection coefficients, gain, axial ratios and radiation patterns. As a result, it is experimentally proved that a broadband impedance bandwidth of 17.32% and 14.42% under the criteria of less than VSWR 2:1 and 1.5:1, respectively, have been obtained and an RHCP axial ratio of 2.34% with a maximum gain of 7.79 dBic has been accomplished by using the proposed antenna with coax-to-SIW transition operating at the X-band of 10 GHz center frequency.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2011.2109675</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antenna feeds ; Antenna measurements ; Antenna radiation patterns ; Antennas ; Applied sciences ; Asymmetric inductive diaphragm ; Bandwidth ; cavity-backed resonator ; circular polarization ; Circularity ; Exact sciences and technology ; Feeding ; Gain ; Impedance ; Microstrip ; Microstrip antennas ; Patch antennas ; Radiocommunications ; Reflection coefficient ; sequential feeding ; substrate integrated waveguide (SIW) ; Telecommunications ; Telecommunications and information theory ; X-band</subject><ispartof>IEEE transactions on antennas and propagation, 2011-04, Vol.59 (4), p.1398-1403</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c8e18959bd1a2939a8e557ded9ff26f59371b0f824966eb99b4778c052f818b73</citedby><cites>FETCH-LOGICAL-c352t-c8e18959bd1a2939a8e557ded9ff26f59371b0f824966eb99b4778c052f818b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5704559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24105674$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong-Yeon Kim</creatorcontrib><creatorcontrib>Lee, J W</creatorcontrib><creatorcontrib>Lee, T K</creatorcontrib><creatorcontrib>Choon Sik Cho</creatorcontrib><title>Design of SIW Cavity-Backed Circular-Polarized Antennas Using Two Different Feeding Transitions</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Two circular-polarized circular patch antennas which have novel feeding structures such as a substrate integrated waveguide (SIW), a cavity-backed resonator and two different feeding transitions, are proposed and experimentally investigated in terms of electrical performances, including reflection coefficients, optimized parameter values, circular polarized antenna gain, axial ratios and radiation patterns. By inserting asymmetrical inductive via arrays into the interface region between the circular patch and SIW feeding structure, it is found that an enhancement of input impedance bandwidth has been achieved. In addition, in order to check the effects of feeding transition types on the electrical performances of the main radiator, two different feeding transitions, namely microstrip-to-SIW and coax-to-SIW, have been studied by considering reflection coefficients, gain, axial ratios and radiation patterns. As a result, it is experimentally proved that a broadband impedance bandwidth of 17.32% and 14.42% under the criteria of less than VSWR 2:1 and 1.5:1, respectively, have been obtained and an RHCP axial ratio of 2.34% with a maximum gain of 7.79 dBic has been accomplished by using the proposed antenna with coax-to-SIW transition operating at the X-band of 10 GHz center frequency.</description><subject>Antenna feeds</subject><subject>Antenna measurements</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Applied sciences</subject><subject>Asymmetric inductive diaphragm</subject><subject>Bandwidth</subject><subject>cavity-backed resonator</subject><subject>circular polarization</subject><subject>Circularity</subject><subject>Exact sciences and technology</subject><subject>Feeding</subject><subject>Gain</subject><subject>Impedance</subject><subject>Microstrip</subject><subject>Microstrip antennas</subject><subject>Patch antennas</subject><subject>Radiocommunications</subject><subject>Reflection coefficient</subject><subject>sequential feeding</subject><subject>substrate integrated waveguide (SIW)</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>X-band</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LHDEQgEOp0Kv6XvBlKRSf9sxkk03yeD1_gqDQE_sWstmJRNesTfZa9K9v9A4ffEmYmW-GmY-Qb0DnAFQfrRbXc0YB5qxErRSfyAyEUDVjDD6TGaWgas3a31_I15zvS8gV5zNijjGHu1iNvvp1cVst7d8wPdc_rXvAvlqG5NaDTfX1WN7wUlKLOGGMNlc3OcS7avVvrI6D95gwTtUpYv-WTTbmMIUx5j2y4-2QcX_775Kb05PV8ry-vDq7WC4ua9cINtVOISgtdNeDZbrRVqEQssdee89aL3QjoaNeMa7bFjutOy6lclQwr0B1stklh5u5T2n8s8Y8mceQHQ6DjTius1FSUGiBskJ-_0Dej-sUy3JGA29o0acLRDeQS2POCb15SuHRpmcD1Lz6NsW3efVttr5Ly4_tXJudHXxx4EJ-72McqGglL9zBhguI-F4WknJRzvwPOnOHZg</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Dong-Yeon Kim</creator><creator>Lee, J W</creator><creator>Lee, T K</creator><creator>Choon Sik Cho</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110401</creationdate><title>Design of SIW Cavity-Backed Circular-Polarized Antennas Using Two Different Feeding Transitions</title><author>Dong-Yeon Kim ; Lee, J W ; Lee, T K ; Choon Sik Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c8e18959bd1a2939a8e557ded9ff26f59371b0f824966eb99b4778c052f818b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antenna feeds</topic><topic>Antenna measurements</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Applied sciences</topic><topic>Asymmetric inductive diaphragm</topic><topic>Bandwidth</topic><topic>cavity-backed resonator</topic><topic>circular polarization</topic><topic>Circularity</topic><topic>Exact sciences and technology</topic><topic>Feeding</topic><topic>Gain</topic><topic>Impedance</topic><topic>Microstrip</topic><topic>Microstrip antennas</topic><topic>Patch antennas</topic><topic>Radiocommunications</topic><topic>Reflection coefficient</topic><topic>sequential feeding</topic><topic>substrate integrated waveguide (SIW)</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>X-band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong-Yeon Kim</creatorcontrib><creatorcontrib>Lee, J W</creatorcontrib><creatorcontrib>Lee, T K</creatorcontrib><creatorcontrib>Choon Sik Cho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong-Yeon Kim</au><au>Lee, J W</au><au>Lee, T K</au><au>Choon Sik Cho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of SIW Cavity-Backed Circular-Polarized Antennas Using Two Different Feeding Transitions</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>59</volume><issue>4</issue><spage>1398</spage><epage>1403</epage><pages>1398-1403</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Two circular-polarized circular patch antennas which have novel feeding structures such as a substrate integrated waveguide (SIW), a cavity-backed resonator and two different feeding transitions, are proposed and experimentally investigated in terms of electrical performances, including reflection coefficients, optimized parameter values, circular polarized antenna gain, axial ratios and radiation patterns. By inserting asymmetrical inductive via arrays into the interface region between the circular patch and SIW feeding structure, it is found that an enhancement of input impedance bandwidth has been achieved. In addition, in order to check the effects of feeding transition types on the electrical performances of the main radiator, two different feeding transitions, namely microstrip-to-SIW and coax-to-SIW, have been studied by considering reflection coefficients, gain, axial ratios and radiation patterns. As a result, it is experimentally proved that a broadband impedance bandwidth of 17.32% and 14.42% under the criteria of less than VSWR 2:1 and 1.5:1, respectively, have been obtained and an RHCP axial ratio of 2.34% with a maximum gain of 7.79 dBic has been accomplished by using the proposed antenna with coax-to-SIW transition operating at the X-band of 10 GHz center frequency.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2011.2109675</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2011-04, Vol.59 (4), p.1398-1403
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_914301099
source IEEE Xplore (Online service)
subjects Antenna feeds
Antenna measurements
Antenna radiation patterns
Antennas
Applied sciences
Asymmetric inductive diaphragm
Bandwidth
cavity-backed resonator
circular polarization
Circularity
Exact sciences and technology
Feeding
Gain
Impedance
Microstrip
Microstrip antennas
Patch antennas
Radiocommunications
Reflection coefficient
sequential feeding
substrate integrated waveguide (SIW)
Telecommunications
Telecommunications and information theory
X-band
title Design of SIW Cavity-Backed Circular-Polarized Antennas Using Two Different Feeding Transitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20SIW%20Cavity-Backed%20Circular-Polarized%20Antennas%20Using%20Two%20Different%20Feeding%20Transitions&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dong-Yeon%20Kim&rft.date=2011-04-01&rft.volume=59&rft.issue=4&rft.spage=1398&rft.epage=1403&rft.pages=1398-1403&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2011.2109675&rft_dat=%3Cproquest_pasca%3E875016102%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-c8e18959bd1a2939a8e557ded9ff26f59371b0f824966eb99b4778c052f818b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=914301099&rft_id=info:pmid/&rft_ieee_id=5704559&rfr_iscdi=true