Loading…
A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics
Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite su...
Saved in:
Published in: | Journal of lightwave technology 2011-04, Vol.29 (7), p.949-959 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73 |
container_end_page | 959 |
container_issue | 7 |
container_start_page | 949 |
container_title | Journal of lightwave technology |
container_volume | 29 |
creator | Lei Zhang Jung Hoon Lee Oskooi, A Hochman, A White, J K Johnson, S G |
description | Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite surfaces, and since SIE methods automatically represent the infinite extent of the exterior scattered field, there was no need to develop numerical absorbers. Numerical absorbers are needed when SIE methods are used to simulate nanophotonic devices that process or couple light, to provide nonreflecting termination at the optical ports of such devices. In this paper, we focus on the problem of developing an approach to absorbers that are suitable for port termination, yet preserve the surface-only discretization and the geometry-independent Green's function properties of the SIE methods. Preserving these properties allows the absorber approach to be easily incorporated in commonly used fast solvers. We describe our solution to the absorber problem, that of using a gradually increasing surface conductivity, and show how to include surface conductivity in SIE methods. We also analyze numerical results using our absorber approach to terminate a finite-length rectangular cross section dielectric waveguide. The numerical results demonstrate that our surface-conductivity absorber can easily achieve a reflected power of less than 10 -7 , and that the magnitude of the transition reflection is proportional to 1/L 2d+2 , where L is the absorber length and d is the order of the differentiability of the surface conductivity function. |
doi_str_mv | 10.1109/JLT.2011.2107727 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_914475071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5699324</ieee_id><sourcerecordid>1671315591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpoG7Se6EXESjksq4-rd2j43wWNz00oUchy6Nmgyw5mt1A_n1kbHLoaWDmeYeZh5CvnE05Z92Pn8v7qWCcTwVnxgjzgUy41m0jBJcfyYQZKZvWCPWJfEZ8Yowr1ZoJSXN6l18g0vM8prUrr_QywgbSQH_B8JjX9AH79I_-GUtwHugip_Xoh_4F6HyFuaygIA250Ksxxuav2_WTi6_YI82ByuaC3rmUt495yKn3eEKOgosIXw71mDxcXd4vbprl7-vbxXzZeKnl0ASmHTNcBdDKKe0UY2uh284DV8yHlQltp0B75UKQDnQQQYDXQRkTvPRGHpOz_d5tyc8j4GA3PXqI0SXII1o-M1xWPx2v6Ol_6FMeS30CbVclGV0PqRDbQ75kxALBbku_qbosZ3bn31b_duffHvzXyPfDXofexVBc8j2-54SeadV1snLf9lwPAO9jPaszoeQbgG2N0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914475071</pqid></control><display><type>article</type><title>A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics</title><source>IEEE Xplore (Online service)</source><creator>Lei Zhang ; Jung Hoon Lee ; Oskooi, A ; Hochman, A ; White, J K ; Johnson, S G</creator><creatorcontrib>Lei Zhang ; Jung Hoon Lee ; Oskooi, A ; Hochman, A ; White, J K ; Johnson, S G</creatorcontrib><description>Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite surfaces, and since SIE methods automatically represent the infinite extent of the exterior scattered field, there was no need to develop numerical absorbers. Numerical absorbers are needed when SIE methods are used to simulate nanophotonic devices that process or couple light, to provide nonreflecting termination at the optical ports of such devices. In this paper, we focus on the problem of developing an approach to absorbers that are suitable for port termination, yet preserve the surface-only discretization and the geometry-independent Green's function properties of the SIE methods. Preserving these properties allows the absorber approach to be easily incorporated in commonly used fast solvers. We describe our solution to the absorber problem, that of using a gradually increasing surface conductivity, and show how to include surface conductivity in SIE methods. We also analyze numerical results using our absorber approach to terminate a finite-length rectangular cross section dielectric waveguide. The numerical results demonstrate that our surface-conductivity absorber can easily achieve a reflected power of less than 10 -7 , and that the magnitude of the transition reflection is proportional to 1/L 2d+2 , where L is the absorber length and d is the order of the differentiability of the surface conductivity function.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2011.2107727</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Boundary element method ; Circuit properties ; Computer simulation ; Conductivity ; Devices ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Exteriors ; Integrated optics. Optical fibers and wave guides ; Magnetic resonance imaging ; Mathematical analysis ; Mathematical models ; Nanocomposites ; Nanomaterials ; nanophotonics ; Nanostructure ; Optical and optoelectronic circuits ; Optical surface waves ; Optical waveguides ; Ports ; reflections ; Studies ; surface conductive absorber ; Surface impedance ; surface integral equation ; Surface waves ; Waveguide theory</subject><ispartof>Journal of lightwave technology, 2011-04, Vol.29 (7), p.949-959</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73</citedby><cites>FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5699324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25654993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei Zhang</creatorcontrib><creatorcontrib>Jung Hoon Lee</creatorcontrib><creatorcontrib>Oskooi, A</creatorcontrib><creatorcontrib>Hochman, A</creatorcontrib><creatorcontrib>White, J K</creatorcontrib><creatorcontrib>Johnson, S G</creatorcontrib><title>A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite surfaces, and since SIE methods automatically represent the infinite extent of the exterior scattered field, there was no need to develop numerical absorbers. Numerical absorbers are needed when SIE methods are used to simulate nanophotonic devices that process or couple light, to provide nonreflecting termination at the optical ports of such devices. In this paper, we focus on the problem of developing an approach to absorbers that are suitable for port termination, yet preserve the surface-only discretization and the geometry-independent Green's function properties of the SIE methods. Preserving these properties allows the absorber approach to be easily incorporated in commonly used fast solvers. We describe our solution to the absorber problem, that of using a gradually increasing surface conductivity, and show how to include surface conductivity in SIE methods. We also analyze numerical results using our absorber approach to terminate a finite-length rectangular cross section dielectric waveguide. The numerical results demonstrate that our surface-conductivity absorber can easily achieve a reflected power of less than 10 -7 , and that the magnitude of the transition reflection is proportional to 1/L 2d+2 , where L is the absorber length and d is the order of the differentiability of the surface conductivity function.</description><subject>Applied sciences</subject><subject>Boundary element method</subject><subject>Circuit properties</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Exteriors</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanophotonics</subject><subject>Nanostructure</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical surface waves</subject><subject>Optical waveguides</subject><subject>Ports</subject><subject>reflections</subject><subject>Studies</subject><subject>surface conductive absorber</subject><subject>Surface impedance</subject><subject>surface integral equation</subject><subject>Surface waves</subject><subject>Waveguide theory</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVpoG7Se6EXESjksq4-rd2j43wWNz00oUchy6Nmgyw5mt1A_n1kbHLoaWDmeYeZh5CvnE05Z92Pn8v7qWCcTwVnxgjzgUy41m0jBJcfyYQZKZvWCPWJfEZ8Yowr1ZoJSXN6l18g0vM8prUrr_QywgbSQH_B8JjX9AH79I_-GUtwHugip_Xoh_4F6HyFuaygIA250Ksxxuav2_WTi6_YI82ByuaC3rmUt495yKn3eEKOgosIXw71mDxcXd4vbprl7-vbxXzZeKnl0ASmHTNcBdDKKe0UY2uh284DV8yHlQltp0B75UKQDnQQQYDXQRkTvPRGHpOz_d5tyc8j4GA3PXqI0SXII1o-M1xWPx2v6Ol_6FMeS30CbVclGV0PqRDbQ75kxALBbku_qbosZ3bn31b_duffHvzXyPfDXofexVBc8j2-54SeadV1snLf9lwPAO9jPaszoeQbgG2N0A</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Lei Zhang</creator><creator>Jung Hoon Lee</creator><creator>Oskooi, A</creator><creator>Hochman, A</creator><creator>White, J K</creator><creator>Johnson, S G</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110401</creationdate><title>A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics</title><author>Lei Zhang ; Jung Hoon Lee ; Oskooi, A ; Hochman, A ; White, J K ; Johnson, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Boundary element method</topic><topic>Circuit properties</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Exteriors</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanophotonics</topic><topic>Nanostructure</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical surface waves</topic><topic>Optical waveguides</topic><topic>Ports</topic><topic>reflections</topic><topic>Studies</topic><topic>surface conductive absorber</topic><topic>Surface impedance</topic><topic>surface integral equation</topic><topic>Surface waves</topic><topic>Waveguide theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei Zhang</creatorcontrib><creatorcontrib>Jung Hoon Lee</creatorcontrib><creatorcontrib>Oskooi, A</creatorcontrib><creatorcontrib>Hochman, A</creatorcontrib><creatorcontrib>White, J K</creatorcontrib><creatorcontrib>Johnson, S G</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei Zhang</au><au>Jung Hoon Lee</au><au>Oskooi, A</au><au>Hochman, A</au><au>White, J K</au><au>Johnson, S G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>29</volume><issue>7</issue><spage>949</spage><epage>959</epage><pages>949-959</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite surfaces, and since SIE methods automatically represent the infinite extent of the exterior scattered field, there was no need to develop numerical absorbers. Numerical absorbers are needed when SIE methods are used to simulate nanophotonic devices that process or couple light, to provide nonreflecting termination at the optical ports of such devices. In this paper, we focus on the problem of developing an approach to absorbers that are suitable for port termination, yet preserve the surface-only discretization and the geometry-independent Green's function properties of the SIE methods. Preserving these properties allows the absorber approach to be easily incorporated in commonly used fast solvers. We describe our solution to the absorber problem, that of using a gradually increasing surface conductivity, and show how to include surface conductivity in SIE methods. We also analyze numerical results using our absorber approach to terminate a finite-length rectangular cross section dielectric waveguide. The numerical results demonstrate that our surface-conductivity absorber can easily achieve a reflected power of less than 10 -7 , and that the magnitude of the transition reflection is proportional to 1/L 2d+2 , where L is the absorber length and d is the order of the differentiability of the surface conductivity function.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2011.2107727</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2011-04, Vol.29 (7), p.949-959 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_914475071 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Boundary element method Circuit properties Computer simulation Conductivity Devices Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Exteriors Integrated optics. Optical fibers and wave guides Magnetic resonance imaging Mathematical analysis Mathematical models Nanocomposites Nanomaterials nanophotonics Nanostructure Optical and optoelectronic circuits Optical surface waves Optical waveguides Ports reflections Studies surface conductive absorber Surface impedance surface integral equation Surface waves Waveguide theory |
title | A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Boundary%20Element%20Method%20Using%20Surface%20Conductive%20Absorbers%20for%20Full-Wave%20Analysis%20of%203-D%20Nanophotonics&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Lei%20Zhang&rft.date=2011-04-01&rft.volume=29&rft.issue=7&rft.spage=949&rft.epage=959&rft.pages=949-959&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2011.2107727&rft_dat=%3Cproquest_pasca%3E1671315591%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=914475071&rft_id=info:pmid/&rft_ieee_id=5699324&rfr_iscdi=true |