Loading…

A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics

Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite su...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2011-04, Vol.29 (7), p.949-959
Main Authors: Lei Zhang, Jung Hoon Lee, Oskooi, A, Hochman, A, White, J K, Johnson, S G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73
cites cdi_FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73
container_end_page 959
container_issue 7
container_start_page 949
container_title Journal of lightwave technology
container_volume 29
creator Lei Zhang
Jung Hoon Lee
Oskooi, A
Hochman, A
White, J K
Johnson, S G
description Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite surfaces, and since SIE methods automatically represent the infinite extent of the exterior scattered field, there was no need to develop numerical absorbers. Numerical absorbers are needed when SIE methods are used to simulate nanophotonic devices that process or couple light, to provide nonreflecting termination at the optical ports of such devices. In this paper, we focus on the problem of developing an approach to absorbers that are suitable for port termination, yet preserve the surface-only discretization and the geometry-independent Green's function properties of the SIE methods. Preserving these properties allows the absorber approach to be easily incorporated in commonly used fast solvers. We describe our solution to the absorber problem, that of using a gradually increasing surface conductivity, and show how to include surface conductivity in SIE methods. We also analyze numerical results using our absorber approach to terminate a finite-length rectangular cross section dielectric waveguide. The numerical results demonstrate that our surface-conductivity absorber can easily achieve a reflected power of less than 10 -7 , and that the magnitude of the transition reflection is proportional to 1/L 2d+2 , where L is the absorber length and d is the order of the differentiability of the surface conductivity function.
doi_str_mv 10.1109/JLT.2011.2107727
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_914475071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5699324</ieee_id><sourcerecordid>1671315591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpoG7Se6EXESjksq4-rd2j43wWNz00oUchy6Nmgyw5mt1A_n1kbHLoaWDmeYeZh5CvnE05Z92Pn8v7qWCcTwVnxgjzgUy41m0jBJcfyYQZKZvWCPWJfEZ8Yowr1ZoJSXN6l18g0vM8prUrr_QywgbSQH_B8JjX9AH79I_-GUtwHugip_Xoh_4F6HyFuaygIA250Ksxxuav2_WTi6_YI82ByuaC3rmUt495yKn3eEKOgosIXw71mDxcXd4vbprl7-vbxXzZeKnl0ASmHTNcBdDKKe0UY2uh284DV8yHlQltp0B75UKQDnQQQYDXQRkTvPRGHpOz_d5tyc8j4GA3PXqI0SXII1o-M1xWPx2v6Ol_6FMeS30CbVclGV0PqRDbQ75kxALBbku_qbosZ3bn31b_duffHvzXyPfDXofexVBc8j2-54SeadV1snLf9lwPAO9jPaszoeQbgG2N0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914475071</pqid></control><display><type>article</type><title>A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics</title><source>IEEE Xplore (Online service)</source><creator>Lei Zhang ; Jung Hoon Lee ; Oskooi, A ; Hochman, A ; White, J K ; Johnson, S G</creator><creatorcontrib>Lei Zhang ; Jung Hoon Lee ; Oskooi, A ; Hochman, A ; White, J K ; Johnson, S G</creatorcontrib><description>Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite surfaces, and since SIE methods automatically represent the infinite extent of the exterior scattered field, there was no need to develop numerical absorbers. Numerical absorbers are needed when SIE methods are used to simulate nanophotonic devices that process or couple light, to provide nonreflecting termination at the optical ports of such devices. In this paper, we focus on the problem of developing an approach to absorbers that are suitable for port termination, yet preserve the surface-only discretization and the geometry-independent Green's function properties of the SIE methods. Preserving these properties allows the absorber approach to be easily incorporated in commonly used fast solvers. We describe our solution to the absorber problem, that of using a gradually increasing surface conductivity, and show how to include surface conductivity in SIE methods. We also analyze numerical results using our absorber approach to terminate a finite-length rectangular cross section dielectric waveguide. The numerical results demonstrate that our surface-conductivity absorber can easily achieve a reflected power of less than 10 -7 , and that the magnitude of the transition reflection is proportional to 1/L 2d+2 , where L is the absorber length and d is the order of the differentiability of the surface conductivity function.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2011.2107727</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Boundary element method ; Circuit properties ; Computer simulation ; Conductivity ; Devices ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Exteriors ; Integrated optics. Optical fibers and wave guides ; Magnetic resonance imaging ; Mathematical analysis ; Mathematical models ; Nanocomposites ; Nanomaterials ; nanophotonics ; Nanostructure ; Optical and optoelectronic circuits ; Optical surface waves ; Optical waveguides ; Ports ; reflections ; Studies ; surface conductive absorber ; Surface impedance ; surface integral equation ; Surface waves ; Waveguide theory</subject><ispartof>Journal of lightwave technology, 2011-04, Vol.29 (7), p.949-959</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73</citedby><cites>FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5699324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25654993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei Zhang</creatorcontrib><creatorcontrib>Jung Hoon Lee</creatorcontrib><creatorcontrib>Oskooi, A</creatorcontrib><creatorcontrib>Hochman, A</creatorcontrib><creatorcontrib>White, J K</creatorcontrib><creatorcontrib>Johnson, S G</creatorcontrib><title>A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite surfaces, and since SIE methods automatically represent the infinite extent of the exterior scattered field, there was no need to develop numerical absorbers. Numerical absorbers are needed when SIE methods are used to simulate nanophotonic devices that process or couple light, to provide nonreflecting termination at the optical ports of such devices. In this paper, we focus on the problem of developing an approach to absorbers that are suitable for port termination, yet preserve the surface-only discretization and the geometry-independent Green's function properties of the SIE methods. Preserving these properties allows the absorber approach to be easily incorporated in commonly used fast solvers. We describe our solution to the absorber problem, that of using a gradually increasing surface conductivity, and show how to include surface conductivity in SIE methods. We also analyze numerical results using our absorber approach to terminate a finite-length rectangular cross section dielectric waveguide. The numerical results demonstrate that our surface-conductivity absorber can easily achieve a reflected power of less than 10 -7 , and that the magnitude of the transition reflection is proportional to 1/L 2d+2 , where L is the absorber length and d is the order of the differentiability of the surface conductivity function.</description><subject>Applied sciences</subject><subject>Boundary element method</subject><subject>Circuit properties</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Exteriors</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanophotonics</subject><subject>Nanostructure</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical surface waves</subject><subject>Optical waveguides</subject><subject>Ports</subject><subject>reflections</subject><subject>Studies</subject><subject>surface conductive absorber</subject><subject>Surface impedance</subject><subject>surface integral equation</subject><subject>Surface waves</subject><subject>Waveguide theory</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVpoG7Se6EXESjksq4-rd2j43wWNz00oUchy6Nmgyw5mt1A_n1kbHLoaWDmeYeZh5CvnE05Z92Pn8v7qWCcTwVnxgjzgUy41m0jBJcfyYQZKZvWCPWJfEZ8Yowr1ZoJSXN6l18g0vM8prUrr_QywgbSQH_B8JjX9AH79I_-GUtwHugip_Xoh_4F6HyFuaygIA250Ksxxuav2_WTi6_YI82ByuaC3rmUt495yKn3eEKOgosIXw71mDxcXd4vbprl7-vbxXzZeKnl0ASmHTNcBdDKKe0UY2uh284DV8yHlQltp0B75UKQDnQQQYDXQRkTvPRGHpOz_d5tyc8j4GA3PXqI0SXII1o-M1xWPx2v6Ol_6FMeS30CbVclGV0PqRDbQ75kxALBbku_qbosZ3bn31b_duffHvzXyPfDXofexVBc8j2-54SeadV1snLf9lwPAO9jPaszoeQbgG2N0A</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Lei Zhang</creator><creator>Jung Hoon Lee</creator><creator>Oskooi, A</creator><creator>Hochman, A</creator><creator>White, J K</creator><creator>Johnson, S G</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110401</creationdate><title>A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics</title><author>Lei Zhang ; Jung Hoon Lee ; Oskooi, A ; Hochman, A ; White, J K ; Johnson, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Boundary element method</topic><topic>Circuit properties</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Exteriors</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanophotonics</topic><topic>Nanostructure</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical surface waves</topic><topic>Optical waveguides</topic><topic>Ports</topic><topic>reflections</topic><topic>Studies</topic><topic>surface conductive absorber</topic><topic>Surface impedance</topic><topic>surface integral equation</topic><topic>Surface waves</topic><topic>Waveguide theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei Zhang</creatorcontrib><creatorcontrib>Jung Hoon Lee</creatorcontrib><creatorcontrib>Oskooi, A</creatorcontrib><creatorcontrib>Hochman, A</creatorcontrib><creatorcontrib>White, J K</creatorcontrib><creatorcontrib>Johnson, S G</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei Zhang</au><au>Jung Hoon Lee</au><au>Oskooi, A</au><au>Hochman, A</au><au>White, J K</au><au>Johnson, S G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>29</volume><issue>7</issue><spage>949</spage><epage>959</epage><pages>949-959</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Fast surface integral equation (SIE) methods seem to be ideal for simulating 3-D nanophotonic devices, as such devices generate fields in both the interior device volume and in the infinite exterior domain. SIE methods were originally developed for computing scattering from structures with finite surfaces, and since SIE methods automatically represent the infinite extent of the exterior scattered field, there was no need to develop numerical absorbers. Numerical absorbers are needed when SIE methods are used to simulate nanophotonic devices that process or couple light, to provide nonreflecting termination at the optical ports of such devices. In this paper, we focus on the problem of developing an approach to absorbers that are suitable for port termination, yet preserve the surface-only discretization and the geometry-independent Green's function properties of the SIE methods. Preserving these properties allows the absorber approach to be easily incorporated in commonly used fast solvers. We describe our solution to the absorber problem, that of using a gradually increasing surface conductivity, and show how to include surface conductivity in SIE methods. We also analyze numerical results using our absorber approach to terminate a finite-length rectangular cross section dielectric waveguide. The numerical results demonstrate that our surface-conductivity absorber can easily achieve a reflected power of less than 10 -7 , and that the magnitude of the transition reflection is proportional to 1/L 2d+2 , where L is the absorber length and d is the order of the differentiability of the surface conductivity function.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2011.2107727</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2011-04, Vol.29 (7), p.949-959
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_914475071
source IEEE Xplore (Online service)
subjects Applied sciences
Boundary element method
Circuit properties
Computer simulation
Conductivity
Devices
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Exteriors
Integrated optics. Optical fibers and wave guides
Magnetic resonance imaging
Mathematical analysis
Mathematical models
Nanocomposites
Nanomaterials
nanophotonics
Nanostructure
Optical and optoelectronic circuits
Optical surface waves
Optical waveguides
Ports
reflections
Studies
surface conductive absorber
Surface impedance
surface integral equation
Surface waves
Waveguide theory
title A Novel Boundary Element Method Using Surface Conductive Absorbers for Full-Wave Analysis of 3-D Nanophotonics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Boundary%20Element%20Method%20Using%20Surface%20Conductive%20Absorbers%20for%20Full-Wave%20Analysis%20of%203-D%20Nanophotonics&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Lei%20Zhang&rft.date=2011-04-01&rft.volume=29&rft.issue=7&rft.spage=949&rft.epage=959&rft.pages=949-959&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2011.2107727&rft_dat=%3Cproquest_pasca%3E1671315591%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-f05a0714fe54a45a400d2589ce140cfb7f894e5c4aff3ae5f2f2ec5f477fc3c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=914475071&rft_id=info:pmid/&rft_ieee_id=5699324&rfr_iscdi=true