Loading…
Including Radiation Effects and Dependencies on Process-Related Variability in Advanced Foundry SPICE Models Using a New Physical Model and Parameter Extraction Approach
An automated flow is described for total-ionizing dose (TID)-aware SPICE model generation that includes TID response and its dependence on process variability and layout. A memetic algorithm that balances multiple objectives, subject to realistic constraints, is introduced for global optimization of...
Saved in:
Published in: | IEEE transactions on nuclear science 2011-12, Vol.58 (6), p.2876-2882 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An automated flow is described for total-ionizing dose (TID)-aware SPICE model generation that includes TID response and its dependence on process variability and layout. A memetic algorithm that balances multiple objectives, subject to realistic constraints, is introduced for global optimization of the flow. A differential evolution algorithm is adapted for global exploration, and a modified random pattern search strategy is introduced for local exploitation. The optimizer efficiently reduces the value of different kinds of objective functions in the extraction at reasonable cost and avoids premature convergence in most practical cases. The model is implemented in Verilog-A, can be applied to all foundry model formats, and supports all popular SPICE simulators. To validate the flow, simulations from models extracted from specific targets are compared with measured current-voltage characteristics under various irradiation conditions for 0.35 μm, 0.18 μm, and 90 nm bulk CMOS processes. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2011.2171503 |