Loading…
Strong Markov Local Dirichlet Processes and Stochastic Differential Equations
This paper states the necessary and sufficient conditions on the natural scale and the measure of convergence of the continuous strong Markov local Dirichlet process in order that the process has a representation in the form of a solution of some stochastic differential equation. The results are app...
Saved in:
Published in: | Theory of probability and its applications 1999-01, Vol.43 (2), p.189-202, Article 331 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c270t-2c1f538f55f50b355a297b4b71d2c654e5a4bef36eabb468f0de3da9c46888a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-2c1f538f55f50b355a297b4b71d2c654e5a4bef36eabb468f0de3da9c46888a33 |
container_end_page | 202 |
container_issue | 2 |
container_start_page | 189 |
container_title | Theory of probability and its applications |
container_volume | 43 |
creator | Engelbert, H. J. Wolf, J. |
description | This paper states the necessary and sufficient conditions on the natural scale and the measure of convergence of the continuous strong Markov local Dirichlet process in order that the process has a representation in the form of a solution of some stochastic differential equation. The results are applied to the case of the Bessel process of arbitrary dimension. |
doi_str_mv | 10.1137/S0040585X97976829 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914494899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555081751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2c1f538f55f50b355a297b4b71d2c654e5a4bef36eabb468f0de3da9c46888a33</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMouNR-AG-L99Vkk2ySo9T6B7YorEJvSzab2NR10yap4Lc3tZ4UnMsMzO_NYx4A5wheIoTZVQMhgZTTpWCCVbwURyBDUNCClUgcg2y_LnCFlqdgGsIapqIVJhhnYNFE78bXfCH9m_vIa6fkkN9Yb9Vq0DF_8k7pEHTI5djnTXRqJUO0KiHGaK_HaBM_3-5ktG4MZ-DEyCHo6U-fgJfb-fPsvqgf7x5m13WhSgZjUSpkKOaGUkNhhymVpWAd6RjqS1VRoqkknTa40rLrSMUN7DXupVBp5lxiPAEXh7sb77Y7HWK7djs_JstWIEIE4UIkCB0g5V0IXpt24-279J8tgu0-t_ZPbknDfmmUjd-_RS_t8I_yC8AdccM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914494899</pqid></control><display><type>article</type><title>Strong Markov Local Dirichlet Processes and Stochastic Differential Equations</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global</source><creator>Engelbert, H. J. ; Wolf, J.</creator><creatorcontrib>Engelbert, H. J. ; Wolf, J.</creatorcontrib><description>This paper states the necessary and sufficient conditions on the natural scale and the measure of convergence of the continuous strong Markov local Dirichlet process in order that the process has a representation in the form of a solution of some stochastic differential equation. The results are applied to the case of the Bessel process of arbitrary dimension.</description><identifier>ISSN: 0040-361X</identifier><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97976829</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Brownian motion ; Markov analysis ; Random variables</subject><ispartof>Theory of probability and its applications, 1999-01, Vol.43 (2), p.189-202, Article 331</ispartof><rights>[Copyright] © 1999 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-2c1f538f55f50b355a297b4b71d2c654e5a4bef36eabb468f0de3da9c46888a33</citedby><cites>FETCH-LOGICAL-c270t-2c1f538f55f50b355a297b4b71d2c654e5a4bef36eabb468f0de3da9c46888a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/914494899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Engelbert, H. J.</creatorcontrib><creatorcontrib>Wolf, J.</creatorcontrib><title>Strong Markov Local Dirichlet Processes and Stochastic Differential Equations</title><title>Theory of probability and its applications</title><description>This paper states the necessary and sufficient conditions on the natural scale and the measure of convergence of the continuous strong Markov local Dirichlet process in order that the process has a representation in the form of a solution of some stochastic differential equation. The results are applied to the case of the Bessel process of arbitrary dimension.</description><subject>Brownian motion</subject><subject>Markov analysis</subject><subject>Random variables</subject><issn>0040-361X</issn><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE9LAzEQxYMouNR-AG-L99Vkk2ySo9T6B7YorEJvSzab2NR10yap4Lc3tZ4UnMsMzO_NYx4A5wheIoTZVQMhgZTTpWCCVbwURyBDUNCClUgcg2y_LnCFlqdgGsIapqIVJhhnYNFE78bXfCH9m_vIa6fkkN9Yb9Vq0DF_8k7pEHTI5djnTXRqJUO0KiHGaK_HaBM_3-5ktG4MZ-DEyCHo6U-fgJfb-fPsvqgf7x5m13WhSgZjUSpkKOaGUkNhhymVpWAd6RjqS1VRoqkknTa40rLrSMUN7DXupVBp5lxiPAEXh7sb77Y7HWK7djs_JstWIEIE4UIkCB0g5V0IXpt24-279J8tgu0-t_ZPbknDfmmUjd-_RS_t8I_yC8AdccM</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Engelbert, H. J.</creator><creator>Wolf, J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19990101</creationdate><title>Strong Markov Local Dirichlet Processes and Stochastic Differential Equations</title><author>Engelbert, H. J. ; Wolf, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2c1f538f55f50b355a297b4b71d2c654e5a4bef36eabb468f0de3da9c46888a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Brownian motion</topic><topic>Markov analysis</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelbert, H. J.</creatorcontrib><creatorcontrib>Wolf, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engelbert, H. J.</au><au>Wolf, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Markov Local Dirichlet Processes and Stochastic Differential Equations</atitle><jtitle>Theory of probability and its applications</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>43</volume><issue>2</issue><spage>189</spage><epage>202</epage><pages>189-202</pages><artnum>331</artnum><issn>0040-361X</issn><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>This paper states the necessary and sufficient conditions on the natural scale and the measure of convergence of the continuous strong Markov local Dirichlet process in order that the process has a representation in the form of a solution of some stochastic differential equation. The results are applied to the case of the Bessel process of arbitrary dimension.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97976829</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-361X |
ispartof | Theory of probability and its applications, 1999-01, Vol.43 (2), p.189-202, Article 331 |
issn | 0040-361X 0040-585X 1095-7219 |
language | eng |
recordid | cdi_proquest_journals_914494899 |
source | SIAM Journals Archive; ABI/INFORM Global |
subjects | Brownian motion Markov analysis Random variables |
title | Strong Markov Local Dirichlet Processes and Stochastic Differential Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Markov%20Local%20Dirichlet%20Processes%20and%20Stochastic%20Differential%20Equations&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Engelbert,%20H.%20J.&rft.date=1999-01-01&rft.volume=43&rft.issue=2&rft.spage=189&rft.epage=202&rft.pages=189-202&rft.artnum=331&rft.issn=0040-361X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97976829&rft_dat=%3Cproquest_cross%3E2555081751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-2c1f538f55f50b355a297b4b71d2c654e5a4bef36eabb468f0de3da9c46888a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=914494899&rft_id=info:pmid/&rfr_iscdi=true |