Loading…
Short Communications: Convergence of Integrals of UnboundedReal Functions in Random Measures
$\sm$-additive random measures and integrals with respect to them of real valued functions are considered in the most general setting. The statement of convergence of $\int f\,d\mu_n\tlp\int f\,d\mu$, $\ny$, is proved under conditions similar to uniform integrability. An analogue of the Valle--Pouss...
Saved in:
Published in: | Theory of probability and its applications 1998-04, Vol.42 (2), p.310-314 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c695-a372659f3e4c63fd6f4c21e2088c55e9418497b1f2d3a295c13d9efb03ac75b3 |
container_end_page | 314 |
container_issue | 2 |
container_start_page | 310 |
container_title | Theory of probability and its applications |
container_volume | 42 |
creator | Radchenko, V. N. |
description | $\sm$-additive random measures and integrals with respect to them of real valued functions are considered in the most general setting. The statement of convergence of $\int f\,d\mu_n\tlp\int f\,d\mu$, $\ny$, is proved under conditions similar to uniform integrability. An analogue of the Valle--Poussin theorem is established. A criterion is given for the relation $\int f_ng d\mu\tlp\int g\,d\eta$, $\ny$, to hold for all bounded g. |
doi_str_mv | 10.1137/S0040585X97976179 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914500955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555137481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695-a372659f3e4c63fd6f4c21e2088c55e9418497b1f2d3a295c13d9efb03ac75b3</originalsourceid><addsrcrecordid>eNplkFFLwzAUhYMoOKc_wLfgezW3aZrGNxlOBxNhU_BBKGl6MzvWZCat4L-3db75dDmcc-69fIRcArsG4PJmzVjGRCHelFQyB6mOyASYEolMQR2TyWgno39KzmLcMsbyFMSEvK8_fOjozLdt7xqju8a7eDto94Vhg84g9ZYuXIeboHdxFK-u8r2rsV6h3tF578xviTaOrrSrfUufUMc-YDwnJ3Yo4cXfnJL1_P5l9pgsnx8Ws7tlYvLhQ81lmgtlOWYm57bObWZSwJQVhRECVQZFpmQFNq25TpUwwGuFtmJcGykqPiVXh6374D97jF259X1ww8FSQSbYQEEMITiETPAxBrTlPjStDt8lsHIkWP4jyH8AwH9kHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914500955</pqid></control><display><type>article</type><title>Short Communications: Convergence of Integrals of UnboundedReal Functions in Random Measures</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Radchenko, V. N.</creator><creatorcontrib>Radchenko, V. N.</creatorcontrib><description>$\sm$-additive random measures and integrals with respect to them of real valued functions are considered in the most general setting. The statement of convergence of $\int f\,d\mu_n\tlp\int f\,d\mu$, $\ny$, is proved under conditions similar to uniform integrability. An analogue of the Valle--Poussin theorem is established. A criterion is given for the relation $\int f_ng d\mu\tlp\int g\,d\eta$, $\ny$, to hold for all bounded g.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97976179</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Inequality ; Integrals ; Random variables</subject><ispartof>Theory of probability and its applications, 1998-04, Vol.42 (2), p.310-314</ispartof><rights>[Copyright] © 1998 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c695-a372659f3e4c63fd6f4c21e2088c55e9418497b1f2d3a295c13d9efb03ac75b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/914500955?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Radchenko, V. N.</creatorcontrib><title>Short Communications: Convergence of Integrals of UnboundedReal Functions in Random Measures</title><title>Theory of probability and its applications</title><description>$\sm$-additive random measures and integrals with respect to them of real valued functions are considered in the most general setting. The statement of convergence of $\int f\,d\mu_n\tlp\int f\,d\mu$, $\ny$, is proved under conditions similar to uniform integrability. An analogue of the Valle--Poussin theorem is established. A criterion is given for the relation $\int f_ng d\mu\tlp\int g\,d\eta$, $\ny$, to hold for all bounded g.</description><subject>Algebra</subject><subject>Inequality</subject><subject>Integrals</subject><subject>Random variables</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkFFLwzAUhYMoOKc_wLfgezW3aZrGNxlOBxNhU_BBKGl6MzvWZCat4L-3db75dDmcc-69fIRcArsG4PJmzVjGRCHelFQyB6mOyASYEolMQR2TyWgno39KzmLcMsbyFMSEvK8_fOjozLdt7xqju8a7eDto94Vhg84g9ZYuXIeboHdxFK-u8r2rsV6h3tF578xviTaOrrSrfUufUMc-YDwnJ3Yo4cXfnJL1_P5l9pgsnx8Ws7tlYvLhQ81lmgtlOWYm57bObWZSwJQVhRECVQZFpmQFNq25TpUwwGuFtmJcGykqPiVXh6374D97jF259X1ww8FSQSbYQEEMITiETPAxBrTlPjStDt8lsHIkWP4jyH8AwH9kHA</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Radchenko, V. N.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19980401</creationdate><title>Short Communications: Convergence of Integrals of UnboundedReal Functions in Random Measures</title><author>Radchenko, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695-a372659f3e4c63fd6f4c21e2088c55e9418497b1f2d3a295c13d9efb03ac75b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algebra</topic><topic>Inequality</topic><topic>Integrals</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radchenko, V. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radchenko, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short Communications: Convergence of Integrals of UnboundedReal Functions in Random Measures</atitle><jtitle>Theory of probability and its applications</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>42</volume><issue>2</issue><spage>310</spage><epage>314</epage><pages>310-314</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>$\sm$-additive random measures and integrals with respect to them of real valued functions are considered in the most general setting. The statement of convergence of $\int f\,d\mu_n\tlp\int f\,d\mu$, $\ny$, is proved under conditions similar to uniform integrability. An analogue of the Valle--Poussin theorem is established. A criterion is given for the relation $\int f_ng d\mu\tlp\int g\,d\eta$, $\ny$, to hold for all bounded g.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97976179</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-585X |
ispartof | Theory of probability and its applications, 1998-04, Vol.42 (2), p.310-314 |
issn | 0040-585X 1095-7219 |
language | eng |
recordid | cdi_proquest_journals_914500955 |
source | ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Algebra Inequality Integrals Random variables |
title | Short Communications: Convergence of Integrals of UnboundedReal Functions in Random Measures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20Communications:%20Convergence%20of%20Integrals%20of%20UnboundedReal%20Functions%20in%20Random%20Measures&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Radchenko,%20V.%20N.&rft.date=1998-04-01&rft.volume=42&rft.issue=2&rft.spage=310&rft.epage=314&rft.pages=310-314&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97976179&rft_dat=%3Cproquest_cross%3E2555137481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c695-a372659f3e4c63fd6f4c21e2088c55e9418497b1f2d3a295c13d9efb03ac75b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=914500955&rft_id=info:pmid/&rfr_iscdi=true |