Loading…
Prediction and Comparison of High-Performance On-Chip Global Interconnection
As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level...
Saved in:
Published in: | IEEE transactions on very large scale integration (VLSI) systems 2011-07, Vol.19 (7), p.1154-1166 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3 |
container_end_page | 1166 |
container_issue | 7 |
container_start_page | 1154 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 19 |
creator | Yulei Zhang Xiang Hu Deutsch, A. Engin, A. E. Buckwalter, J. F. Chung-Kuan Cheng |
description | As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level performance. We propose a general framework to design and optimize a new category of global interconnect based on on-chip transmission line (T-line) technology. We perform a group of experiments using six different global interconnection structures to discover their differences in terms of latency, energy per bit, throughput, area, and signal integrity over several technology nodes. Our results show that T-line structures have the potential to outperform conventional repeated RC wires at future technology nodes to achieve higher performance while using less power and improving the reliability of wire communication. Our results also show that on-chip equalization is helpful to improve throughput, signal integrity, and power efficiency. |
doi_str_mv | 10.1109/TVLSI.2010.2047415 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_915367807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5463287</ieee_id><sourcerecordid>896181902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdRsFb_gF4WQTxtzefu5ihF20KhBYvXkG4mNrKbrEl78N-bftCDuUyGeeZleLLsHqMRxki8rD7nH7MRQakniFUM84tsgDmvCpHeZfqjkhY1weg6u4nxGyHMmECDbL4MoG2ztd7lyul87LteBRtT600-tV-bYgnB-NAp10C-cMV4Y_t80vq1avOZ20JovHNwSLjNroxqI9yd6jBbvb-txtNivpjMxq_zoqG83BackopyoxEgoTRUQjGjtDasNFgLrahBTAAihNM1I8ZAyXitmFhX9ZrXmg6z52NsH_zPDuJWdjY20LbKgd9FWYsS11ggksjHf-S33wWXbpMCc1pWNaoSRI5QE3yMAYzsg-1U-JUYyb1debAr93blyW5aejolq9io1oSkx8bzJmGU1ITsL3g4chYAzmPOyjSv6B-894K0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915367807</pqid></control><display><type>article</type><title>Prediction and Comparison of High-Performance On-Chip Global Interconnection</title><source>IEEE Xplore (Online service)</source><creator>Yulei Zhang ; Xiang Hu ; Deutsch, A. ; Engin, A. E. ; Buckwalter, J. F. ; Chung-Kuan Cheng</creator><creatorcontrib>Yulei Zhang ; Xiang Hu ; Deutsch, A. ; Engin, A. E. ; Buckwalter, J. F. ; Chung-Kuan Cheng</creatorcontrib><description>As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level performance. We propose a general framework to design and optimize a new category of global interconnect based on on-chip transmission line (T-line) technology. We perform a group of experiments using six different global interconnection structures to discover their differences in terms of latency, energy per bit, throughput, area, and signal integrity over several technology nodes. Our results show that T-line structures have the potential to outperform conventional repeated RC wires at future technology nodes to achieve higher performance while using less power and improving the reliability of wire communication. Our results also show that on-chip equalization is helpful to improve throughput, signal integrity, and power efficiency.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2010.2047415</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Categories ; Degradation ; Delay ; Design engineering ; Design. Technologies. Operation analysis. Testing ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Equalization ; Exact sciences and technology ; Integrated circuits ; Interconnect ; Interconnection ; Intersymbol interference ; On-chip global interconnect ; passive equalization ; Performance analysis ; performance prediction ; Power system interconnection ; Power transmission lines ; Reinforced concrete ; Repeaters ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal integrity ; System-on-a-chip ; Throughput ; transmission line ; Very large scale integration ; Wire</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2011-07, Vol.19 (7), p.1154-1166</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3</citedby><cites>FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5463287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24328222$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yulei Zhang</creatorcontrib><creatorcontrib>Xiang Hu</creatorcontrib><creatorcontrib>Deutsch, A.</creatorcontrib><creatorcontrib>Engin, A. E.</creatorcontrib><creatorcontrib>Buckwalter, J. F.</creatorcontrib><creatorcontrib>Chung-Kuan Cheng</creatorcontrib><title>Prediction and Comparison of High-Performance On-Chip Global Interconnection</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level performance. We propose a general framework to design and optimize a new category of global interconnect based on on-chip transmission line (T-line) technology. We perform a group of experiments using six different global interconnection structures to discover their differences in terms of latency, energy per bit, throughput, area, and signal integrity over several technology nodes. Our results show that T-line structures have the potential to outperform conventional repeated RC wires at future technology nodes to achieve higher performance while using less power and improving the reliability of wire communication. Our results also show that on-chip equalization is helpful to improve throughput, signal integrity, and power efficiency.</description><subject>Applied sciences</subject><subject>Categories</subject><subject>Degradation</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Equalization</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Interconnect</subject><subject>Interconnection</subject><subject>Intersymbol interference</subject><subject>On-chip global interconnect</subject><subject>passive equalization</subject><subject>Performance analysis</subject><subject>performance prediction</subject><subject>Power system interconnection</subject><subject>Power transmission lines</subject><subject>Reinforced concrete</subject><subject>Repeaters</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal integrity</subject><subject>System-on-a-chip</subject><subject>Throughput</subject><subject>transmission line</subject><subject>Very large scale integration</subject><subject>Wire</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhhdRsFb_gF4WQTxtzefu5ihF20KhBYvXkG4mNrKbrEl78N-bftCDuUyGeeZleLLsHqMRxki8rD7nH7MRQakniFUM84tsgDmvCpHeZfqjkhY1weg6u4nxGyHMmECDbL4MoG2ztd7lyul87LteBRtT600-tV-bYgnB-NAp10C-cMV4Y_t80vq1avOZ20JovHNwSLjNroxqI9yd6jBbvb-txtNivpjMxq_zoqG83BackopyoxEgoTRUQjGjtDasNFgLrahBTAAihNM1I8ZAyXitmFhX9ZrXmg6z52NsH_zPDuJWdjY20LbKgd9FWYsS11ggksjHf-S33wWXbpMCc1pWNaoSRI5QE3yMAYzsg-1U-JUYyb1debAr93blyW5aejolq9io1oSkx8bzJmGU1ITsL3g4chYAzmPOyjSv6B-894K0</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Yulei Zhang</creator><creator>Xiang Hu</creator><creator>Deutsch, A.</creator><creator>Engin, A. E.</creator><creator>Buckwalter, J. F.</creator><creator>Chung-Kuan Cheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>Prediction and Comparison of High-Performance On-Chip Global Interconnection</title><author>Yulei Zhang ; Xiang Hu ; Deutsch, A. ; Engin, A. E. ; Buckwalter, J. F. ; Chung-Kuan Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Categories</topic><topic>Degradation</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Equalization</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Interconnect</topic><topic>Interconnection</topic><topic>Intersymbol interference</topic><topic>On-chip global interconnect</topic><topic>passive equalization</topic><topic>Performance analysis</topic><topic>performance prediction</topic><topic>Power system interconnection</topic><topic>Power transmission lines</topic><topic>Reinforced concrete</topic><topic>Repeaters</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal integrity</topic><topic>System-on-a-chip</topic><topic>Throughput</topic><topic>transmission line</topic><topic>Very large scale integration</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yulei Zhang</creatorcontrib><creatorcontrib>Xiang Hu</creatorcontrib><creatorcontrib>Deutsch, A.</creatorcontrib><creatorcontrib>Engin, A. E.</creatorcontrib><creatorcontrib>Buckwalter, J. F.</creatorcontrib><creatorcontrib>Chung-Kuan Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yulei Zhang</au><au>Xiang Hu</au><au>Deutsch, A.</au><au>Engin, A. E.</au><au>Buckwalter, J. F.</au><au>Chung-Kuan Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and Comparison of High-Performance On-Chip Global Interconnection</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>19</volume><issue>7</issue><spage>1154</spage><epage>1166</epage><pages>1154-1166</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level performance. We propose a general framework to design and optimize a new category of global interconnect based on on-chip transmission line (T-line) technology. We perform a group of experiments using six different global interconnection structures to discover their differences in terms of latency, energy per bit, throughput, area, and signal integrity over several technology nodes. Our results show that T-line structures have the potential to outperform conventional repeated RC wires at future technology nodes to achieve higher performance while using less power and improving the reliability of wire communication. Our results also show that on-chip equalization is helpful to improve throughput, signal integrity, and power efficiency.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2010.2047415</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2011-07, Vol.19 (7), p.1154-1166 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_proquest_journals_915367807 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Categories Degradation Delay Design engineering Design. Technologies. Operation analysis. Testing Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Equalization Exact sciences and technology Integrated circuits Interconnect Interconnection Intersymbol interference On-chip global interconnect passive equalization Performance analysis performance prediction Power system interconnection Power transmission lines Reinforced concrete Repeaters Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Signal integrity System-on-a-chip Throughput transmission line Very large scale integration Wire |
title | Prediction and Comparison of High-Performance On-Chip Global Interconnection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20Comparison%20of%20High-Performance%20On-Chip%20Global%20Interconnection&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Yulei%20Zhang&rft.date=2011-07-01&rft.volume=19&rft.issue=7&rft.spage=1154&rft.epage=1166&rft.pages=1154-1166&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2010.2047415&rft_dat=%3Cproquest_pasca%3E896181902%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915367807&rft_id=info:pmid/&rft_ieee_id=5463287&rfr_iscdi=true |