Loading…

Prediction and Comparison of High-Performance On-Chip Global Interconnection

As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems 2011-07, Vol.19 (7), p.1154-1166
Main Authors: Yulei Zhang, Xiang Hu, Deutsch, A., Engin, A. E., Buckwalter, J. F., Chung-Kuan Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3
cites cdi_FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3
container_end_page 1166
container_issue 7
container_start_page 1154
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 19
creator Yulei Zhang
Xiang Hu
Deutsch, A.
Engin, A. E.
Buckwalter, J. F.
Chung-Kuan Cheng
description As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level performance. We propose a general framework to design and optimize a new category of global interconnect based on on-chip transmission line (T-line) technology. We perform a group of experiments using six different global interconnection structures to discover their differences in terms of latency, energy per bit, throughput, area, and signal integrity over several technology nodes. Our results show that T-line structures have the potential to outperform conventional repeated RC wires at future technology nodes to achieve higher performance while using less power and improving the reliability of wire communication. Our results also show that on-chip equalization is helpful to improve throughput, signal integrity, and power efficiency.
doi_str_mv 10.1109/TVLSI.2010.2047415
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_915367807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5463287</ieee_id><sourcerecordid>896181902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdRsFb_gF4WQTxtzefu5ihF20KhBYvXkG4mNrKbrEl78N-bftCDuUyGeeZleLLsHqMRxki8rD7nH7MRQakniFUM84tsgDmvCpHeZfqjkhY1weg6u4nxGyHMmECDbL4MoG2ztd7lyul87LteBRtT600-tV-bYgnB-NAp10C-cMV4Y_t80vq1avOZ20JovHNwSLjNroxqI9yd6jBbvb-txtNivpjMxq_zoqG83BackopyoxEgoTRUQjGjtDasNFgLrahBTAAihNM1I8ZAyXitmFhX9ZrXmg6z52NsH_zPDuJWdjY20LbKgd9FWYsS11ggksjHf-S33wWXbpMCc1pWNaoSRI5QE3yMAYzsg-1U-JUYyb1debAr93blyW5aejolq9io1oSkx8bzJmGU1ITsL3g4chYAzmPOyjSv6B-894K0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915367807</pqid></control><display><type>article</type><title>Prediction and Comparison of High-Performance On-Chip Global Interconnection</title><source>IEEE Xplore (Online service)</source><creator>Yulei Zhang ; Xiang Hu ; Deutsch, A. ; Engin, A. E. ; Buckwalter, J. F. ; Chung-Kuan Cheng</creator><creatorcontrib>Yulei Zhang ; Xiang Hu ; Deutsch, A. ; Engin, A. E. ; Buckwalter, J. F. ; Chung-Kuan Cheng</creatorcontrib><description>As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level performance. We propose a general framework to design and optimize a new category of global interconnect based on on-chip transmission line (T-line) technology. We perform a group of experiments using six different global interconnection structures to discover their differences in terms of latency, energy per bit, throughput, area, and signal integrity over several technology nodes. Our results show that T-line structures have the potential to outperform conventional repeated RC wires at future technology nodes to achieve higher performance while using less power and improving the reliability of wire communication. Our results also show that on-chip equalization is helpful to improve throughput, signal integrity, and power efficiency.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2010.2047415</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Categories ; Degradation ; Delay ; Design engineering ; Design. Technologies. Operation analysis. Testing ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Equalization ; Exact sciences and technology ; Integrated circuits ; Interconnect ; Interconnection ; Intersymbol interference ; On-chip global interconnect ; passive equalization ; Performance analysis ; performance prediction ; Power system interconnection ; Power transmission lines ; Reinforced concrete ; Repeaters ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal integrity ; System-on-a-chip ; Throughput ; transmission line ; Very large scale integration ; Wire</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2011-07, Vol.19 (7), p.1154-1166</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3</citedby><cites>FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5463287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24328222$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yulei Zhang</creatorcontrib><creatorcontrib>Xiang Hu</creatorcontrib><creatorcontrib>Deutsch, A.</creatorcontrib><creatorcontrib>Engin, A. E.</creatorcontrib><creatorcontrib>Buckwalter, J. F.</creatorcontrib><creatorcontrib>Chung-Kuan Cheng</creatorcontrib><title>Prediction and Comparison of High-Performance On-Chip Global Interconnection</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level performance. We propose a general framework to design and optimize a new category of global interconnect based on on-chip transmission line (T-line) technology. We perform a group of experiments using six different global interconnection structures to discover their differences in terms of latency, energy per bit, throughput, area, and signal integrity over several technology nodes. Our results show that T-line structures have the potential to outperform conventional repeated RC wires at future technology nodes to achieve higher performance while using less power and improving the reliability of wire communication. Our results also show that on-chip equalization is helpful to improve throughput, signal integrity, and power efficiency.</description><subject>Applied sciences</subject><subject>Categories</subject><subject>Degradation</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Equalization</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Interconnect</subject><subject>Interconnection</subject><subject>Intersymbol interference</subject><subject>On-chip global interconnect</subject><subject>passive equalization</subject><subject>Performance analysis</subject><subject>performance prediction</subject><subject>Power system interconnection</subject><subject>Power transmission lines</subject><subject>Reinforced concrete</subject><subject>Repeaters</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal integrity</subject><subject>System-on-a-chip</subject><subject>Throughput</subject><subject>transmission line</subject><subject>Very large scale integration</subject><subject>Wire</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhhdRsFb_gF4WQTxtzefu5ihF20KhBYvXkG4mNrKbrEl78N-bftCDuUyGeeZleLLsHqMRxki8rD7nH7MRQakniFUM84tsgDmvCpHeZfqjkhY1weg6u4nxGyHMmECDbL4MoG2ztd7lyul87LteBRtT600-tV-bYgnB-NAp10C-cMV4Y_t80vq1avOZ20JovHNwSLjNroxqI9yd6jBbvb-txtNivpjMxq_zoqG83BackopyoxEgoTRUQjGjtDasNFgLrahBTAAihNM1I8ZAyXitmFhX9ZrXmg6z52NsH_zPDuJWdjY20LbKgd9FWYsS11ggksjHf-S33wWXbpMCc1pWNaoSRI5QE3yMAYzsg-1U-JUYyb1debAr93blyW5aejolq9io1oSkx8bzJmGU1ITsL3g4chYAzmPOyjSv6B-894K0</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Yulei Zhang</creator><creator>Xiang Hu</creator><creator>Deutsch, A.</creator><creator>Engin, A. E.</creator><creator>Buckwalter, J. F.</creator><creator>Chung-Kuan Cheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>Prediction and Comparison of High-Performance On-Chip Global Interconnection</title><author>Yulei Zhang ; Xiang Hu ; Deutsch, A. ; Engin, A. E. ; Buckwalter, J. F. ; Chung-Kuan Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Categories</topic><topic>Degradation</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Equalization</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Interconnect</topic><topic>Interconnection</topic><topic>Intersymbol interference</topic><topic>On-chip global interconnect</topic><topic>passive equalization</topic><topic>Performance analysis</topic><topic>performance prediction</topic><topic>Power system interconnection</topic><topic>Power transmission lines</topic><topic>Reinforced concrete</topic><topic>Repeaters</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal integrity</topic><topic>System-on-a-chip</topic><topic>Throughput</topic><topic>transmission line</topic><topic>Very large scale integration</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yulei Zhang</creatorcontrib><creatorcontrib>Xiang Hu</creatorcontrib><creatorcontrib>Deutsch, A.</creatorcontrib><creatorcontrib>Engin, A. E.</creatorcontrib><creatorcontrib>Buckwalter, J. F.</creatorcontrib><creatorcontrib>Chung-Kuan Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yulei Zhang</au><au>Xiang Hu</au><au>Deutsch, A.</au><au>Engin, A. E.</au><au>Buckwalter, J. F.</au><au>Chung-Kuan Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and Comparison of High-Performance On-Chip Global Interconnection</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>19</volume><issue>7</issue><spage>1154</spage><epage>1166</epage><pages>1154-1166</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>As process technology scales, numerous interconnect schemes have been proposed to mitigate the performance degradation caused by the scaling of on-chip global wires. In this paper, we review current on-chip global interconnect structures and develop simple models to analyze their architecture-level performance. We propose a general framework to design and optimize a new category of global interconnect based on on-chip transmission line (T-line) technology. We perform a group of experiments using six different global interconnection structures to discover their differences in terms of latency, energy per bit, throughput, area, and signal integrity over several technology nodes. Our results show that T-line structures have the potential to outperform conventional repeated RC wires at future technology nodes to achieve higher performance while using less power and improving the reliability of wire communication. Our results also show that on-chip equalization is helpful to improve throughput, signal integrity, and power efficiency.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2010.2047415</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2011-07, Vol.19 (7), p.1154-1166
issn 1063-8210
1557-9999
language eng
recordid cdi_proquest_journals_915367807
source IEEE Xplore (Online service)
subjects Applied sciences
Categories
Degradation
Delay
Design engineering
Design. Technologies. Operation analysis. Testing
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Equalization
Exact sciences and technology
Integrated circuits
Interconnect
Interconnection
Intersymbol interference
On-chip global interconnect
passive equalization
Performance analysis
performance prediction
Power system interconnection
Power transmission lines
Reinforced concrete
Repeaters
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Signal integrity
System-on-a-chip
Throughput
transmission line
Very large scale integration
Wire
title Prediction and Comparison of High-Performance On-Chip Global Interconnection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20Comparison%20of%20High-Performance%20On-Chip%20Global%20Interconnection&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Yulei%20Zhang&rft.date=2011-07-01&rft.volume=19&rft.issue=7&rft.spage=1154&rft.epage=1166&rft.pages=1154-1166&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2010.2047415&rft_dat=%3Cproquest_pasca%3E896181902%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-532735fd0e09ade79a4faddf46f1d9da3f049e02253b42ffe6458a49b78b58d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915367807&rft_id=info:pmid/&rft_ieee_id=5463287&rfr_iscdi=true