Loading…

Sparse Antenna Array Optimization With the Cross-Entropy Method

The interest in sparse antenna arrays is growing, mainly due to cost concerns, array size limitations, etc. Formally, it can be shown that their design can be expressed as a constrained multidimensional nonlinear optimization problem. Generally, through lack of convex property, such a multiextrema p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2011-08, Vol.59 (8), p.2862-2871
Main Authors: Minvielle, P., Tantar, E., Tantar, A., Berisset, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-a80573e9e03ee9a59f56236843d59ea9a382d50c2ecf0bdadc0acc5c553cdebe3
cites cdi_FETCH-LOGICAL-c352t-a80573e9e03ee9a59f56236843d59ea9a382d50c2ecf0bdadc0acc5c553cdebe3
container_end_page 2871
container_issue 8
container_start_page 2862
container_title IEEE transactions on antennas and propagation
container_volume 59
creator Minvielle, P.
Tantar, E.
Tantar, A.
Berisset, P.
description The interest in sparse antenna arrays is growing, mainly due to cost concerns, array size limitations, etc. Formally, it can be shown that their design can be expressed as a constrained multidimensional nonlinear optimization problem. Generally, through lack of convex property, such a multiextrema problem is very tricky to solve by usual deterministic optimization methods. In this article, a recent stochastic approach, called Cross-Entropy method, is applied to the continuous constrained design problem. The method is able to construct a random sequence of solutions which converges probabilistically to the optimal or the near-optimal solution. Roughly speaking, it performs adaptive changes to probability density functions according to the Kullback-Leibler cross-entropy. The approach efficiency is illustrated in the design of a sparse antenna array with various requirements.
doi_str_mv 10.1109/TAP.2011.2158941
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_915661148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5892879</ieee_id><sourcerecordid>2559704831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a80573e9e03ee9a59f56236843d59ea9a382d50c2ecf0bdadc0acc5c553cdebe3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcsiiKet-djsbk5SSv2ASgUregtpdpambLNrkh7qrzdLSw8ODMMwz7zMvAhdEzwiBIuHxfh9RDEhI0p4KTJyggaE8zKllJJTNMCYlKmg-fc5uvB-HduszLIBevzolPOQjG0Aa1Uydk7tknkXzMb8qmBam3yZsErCCpKJa71Ppza4ttslbxBWbXWJzmrVeLg61CH6fJouJi_pbP78OhnPUs04DakqMS8YCMAMQCguap5TlpcZq7gAJRQracWxpqBrvKxUpbHSmmvOma5gCWyI7ve6nWt_tuCD3BivoWmUhXbrpcCFyGMWkbz9R67brbPxOCkIz3MSP48Q3kO6_8lBLTtnNsrtJMGy91NGP2Xvpzz4GVfuDrrKa9XUTllt_HGPZjFy0XM3e84AwHEcNWhZCPYHG4R9wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915661148</pqid></control><display><type>article</type><title>Sparse Antenna Array Optimization With the Cross-Entropy Method</title><source>IEEE Xplore (Online service)</source><creator>Minvielle, P. ; Tantar, E. ; Tantar, A. ; Berisset, P.</creator><creatorcontrib>Minvielle, P. ; Tantar, E. ; Tantar, A. ; Berisset, P.</creatorcontrib><description>The interest in sparse antenna arrays is growing, mainly due to cost concerns, array size limitations, etc. Formally, it can be shown that their design can be expressed as a constrained multidimensional nonlinear optimization problem. Generally, through lack of convex property, such a multiextrema problem is very tricky to solve by usual deterministic optimization methods. In this article, a recent stochastic approach, called Cross-Entropy method, is applied to the continuous constrained design problem. The method is able to construct a random sequence of solutions which converges probabilistically to the optimal or the near-optimal solution. Roughly speaking, it performs adaptive changes to probability density functions according to the Kullback-Leibler cross-entropy. The approach efficiency is illustrated in the design of a sparse antenna array with various requirements.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2011.2158941</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antenna arrays ; Antenna design ; Antenna radiation patterns ; Antennas ; Applied sciences ; Arrays ; Constraints ; Cost engineering ; cross-entropy ; Directive antennas ; Exact sciences and technology ; Monte Carlo methods ; Nonlinearity ; Optimization ; phased array ; Probability density functions ; Radiocommunications ; stochastic optimization ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2011-08, Vol.59 (8), p.2862-2871</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a80573e9e03ee9a59f56236843d59ea9a382d50c2ecf0bdadc0acc5c553cdebe3</citedby><cites>FETCH-LOGICAL-c352t-a80573e9e03ee9a59f56236843d59ea9a382d50c2ecf0bdadc0acc5c553cdebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5892879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24444691$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Minvielle, P.</creatorcontrib><creatorcontrib>Tantar, E.</creatorcontrib><creatorcontrib>Tantar, A.</creatorcontrib><creatorcontrib>Berisset, P.</creatorcontrib><title>Sparse Antenna Array Optimization With the Cross-Entropy Method</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The interest in sparse antenna arrays is growing, mainly due to cost concerns, array size limitations, etc. Formally, it can be shown that their design can be expressed as a constrained multidimensional nonlinear optimization problem. Generally, through lack of convex property, such a multiextrema problem is very tricky to solve by usual deterministic optimization methods. In this article, a recent stochastic approach, called Cross-Entropy method, is applied to the continuous constrained design problem. The method is able to construct a random sequence of solutions which converges probabilistically to the optimal or the near-optimal solution. Roughly speaking, it performs adaptive changes to probability density functions according to the Kullback-Leibler cross-entropy. The approach efficiency is illustrated in the design of a sparse antenna array with various requirements.</description><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Constraints</subject><subject>Cost engineering</subject><subject>cross-entropy</subject><subject>Directive antennas</subject><subject>Exact sciences and technology</subject><subject>Monte Carlo methods</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>phased array</subject><subject>Probability density functions</subject><subject>Radiocommunications</subject><subject>stochastic optimization</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcsiiKet-djsbk5SSv2ASgUregtpdpambLNrkh7qrzdLSw8ODMMwz7zMvAhdEzwiBIuHxfh9RDEhI0p4KTJyggaE8zKllJJTNMCYlKmg-fc5uvB-HduszLIBevzolPOQjG0Aa1Uydk7tknkXzMb8qmBam3yZsErCCpKJa71Ppza4ttslbxBWbXWJzmrVeLg61CH6fJouJi_pbP78OhnPUs04DakqMS8YCMAMQCguap5TlpcZq7gAJRQracWxpqBrvKxUpbHSmmvOma5gCWyI7ve6nWt_tuCD3BivoWmUhXbrpcCFyGMWkbz9R67brbPxOCkIz3MSP48Q3kO6_8lBLTtnNsrtJMGy91NGP2Xvpzz4GVfuDrrKa9XUTllt_HGPZjFy0XM3e84AwHEcNWhZCPYHG4R9wg</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Minvielle, P.</creator><creator>Tantar, E.</creator><creator>Tantar, A.</creator><creator>Berisset, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110801</creationdate><title>Sparse Antenna Array Optimization With the Cross-Entropy Method</title><author>Minvielle, P. ; Tantar, E. ; Tantar, A. ; Berisset, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a80573e9e03ee9a59f56236843d59ea9a382d50c2ecf0bdadc0acc5c553cdebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Constraints</topic><topic>Cost engineering</topic><topic>cross-entropy</topic><topic>Directive antennas</topic><topic>Exact sciences and technology</topic><topic>Monte Carlo methods</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>phased array</topic><topic>Probability density functions</topic><topic>Radiocommunications</topic><topic>stochastic optimization</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minvielle, P.</creatorcontrib><creatorcontrib>Tantar, E.</creatorcontrib><creatorcontrib>Tantar, A.</creatorcontrib><creatorcontrib>Berisset, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minvielle, P.</au><au>Tantar, E.</au><au>Tantar, A.</au><au>Berisset, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Antenna Array Optimization With the Cross-Entropy Method</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>59</volume><issue>8</issue><spage>2862</spage><epage>2871</epage><pages>2862-2871</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The interest in sparse antenna arrays is growing, mainly due to cost concerns, array size limitations, etc. Formally, it can be shown that their design can be expressed as a constrained multidimensional nonlinear optimization problem. Generally, through lack of convex property, such a multiextrema problem is very tricky to solve by usual deterministic optimization methods. In this article, a recent stochastic approach, called Cross-Entropy method, is applied to the continuous constrained design problem. The method is able to construct a random sequence of solutions which converges probabilistically to the optimal or the near-optimal solution. Roughly speaking, it performs adaptive changes to probability density functions according to the Kullback-Leibler cross-entropy. The approach efficiency is illustrated in the design of a sparse antenna array with various requirements.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2011.2158941</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2011-08, Vol.59 (8), p.2862-2871
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_915661148
source IEEE Xplore (Online service)
subjects Antenna arrays
Antenna design
Antenna radiation patterns
Antennas
Applied sciences
Arrays
Constraints
Cost engineering
cross-entropy
Directive antennas
Exact sciences and technology
Monte Carlo methods
Nonlinearity
Optimization
phased array
Probability density functions
Radiocommunications
stochastic optimization
Telecommunications
Telecommunications and information theory
title Sparse Antenna Array Optimization With the Cross-Entropy Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Antenna%20Array%20Optimization%20With%20the%20Cross-Entropy%20Method&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Minvielle,%20P.&rft.date=2011-08-01&rft.volume=59&rft.issue=8&rft.spage=2862&rft.epage=2871&rft.pages=2862-2871&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2011.2158941&rft_dat=%3Cproquest_cross%3E2559704831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-a80573e9e03ee9a59f56236843d59ea9a382d50c2ecf0bdadc0acc5c553cdebe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915661148&rft_id=info:pmid/&rft_ieee_id=5892879&rfr_iscdi=true