Loading…
Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation
The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherica...
Saved in:
Published in: | SIAM journal on applied mathematics 2006-01, Vol.66 (3), p.1080-1099 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3 |
container_end_page | 1099 |
container_issue | 3 |
container_start_page | 1080 |
container_title | SIAM journal on applied mathematics |
container_volume | 66 |
creator | Ren, Xiaofeng Wei, Juncheng |
description | The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherical morphology. We show the existence of the sphere pattern and find a stability threshold, so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce the existence and the stability problems to some finite dimensional problems which are accurately solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when the size of the sample is less than the second threshold value. As the stability of the spherical lamellar pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold. |
doi_str_mv | 10.1137/040618771 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916024502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4096302</jstor_id><sourcerecordid>4096302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3</originalsourceid><addsrcrecordid>eNo90M9LwzAcBfAgCs7pwbuH4M1D9Zs2TZOjzPkDBh6mIF5Kln7DOrumS1Kw_70dk53e5cN78Ai5ZnDPWFY8AAfBZFGwEzJhoPKkYOnXKZkAZCJhmVLn5CKEDQBjgqsJ-Z7_1iFia5DqtqLLqFd1U8eBOkuX3Rp9bXTTDHShB_Q4Atf0sXZt2IO4RvpUrxpnfujMda4ZtujpfNfrPbkkZ1Y3Aa_-c0o-n-cfs9dk8f7yNntcJCZjaUxEyoRELEBqmStVpVwWGrg1uqgkgOCWo8VKqtxUlbRa5LmRaFNAQIVQZVNye-jtvNv1GGK5cb1vx8lSMQEpzyEd0d0BGe9C8GjLztdb7YeSQbl_rjw-N9qbg92E6PwRclAiG6v-AF84aeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916024502</pqid></control><display><type>article</type><title>Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Ren, Xiaofeng ; Wei, Juncheng</creator><creatorcontrib>Ren, Xiaofeng ; Wei, Juncheng</creatorcontrib><description>The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherical morphology. We show the existence of the sphere pattern and find a stability threshold, so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce the existence and the stability problems to some finite dimensional problems which are accurately solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when the size of the sample is less than the second threshold value. As the stability of the spherical lamellar pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/040618771</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Copolymers ; Density functional theory ; Eigenfunctions ; Eigenvalues ; Energy ; Euler Lagrange equation ; Free energy ; Lagrange multiplier ; Mathematics ; Molecules ; Monomers ; Morphology ; Optimal size ; Spheres</subject><ispartof>SIAM journal on applied mathematics, 2006-01, Vol.66 (3), p.1080-1099</ispartof><rights>Copyright 2006 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3</citedby><cites>FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4096302$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/916024502?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339,58213,58446</link.rule.ids></links><search><creatorcontrib>Ren, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Juncheng</creatorcontrib><title>Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation</title><title>SIAM journal on applied mathematics</title><description>The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherical morphology. We show the existence of the sphere pattern and find a stability threshold, so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce the existence and the stability problems to some finite dimensional problems which are accurately solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when the size of the sample is less than the second threshold value. As the stability of the spherical lamellar pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Copolymers</subject><subject>Density functional theory</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Energy</subject><subject>Euler Lagrange equation</subject><subject>Free energy</subject><subject>Lagrange multiplier</subject><subject>Mathematics</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Optimal size</subject><subject>Spheres</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90M9LwzAcBfAgCs7pwbuH4M1D9Zs2TZOjzPkDBh6mIF5Kln7DOrumS1Kw_70dk53e5cN78Ai5ZnDPWFY8AAfBZFGwEzJhoPKkYOnXKZkAZCJhmVLn5CKEDQBjgqsJ-Z7_1iFia5DqtqLLqFd1U8eBOkuX3Rp9bXTTDHShB_Q4Atf0sXZt2IO4RvpUrxpnfujMda4ZtujpfNfrPbkkZ1Y3Aa_-c0o-n-cfs9dk8f7yNntcJCZjaUxEyoRELEBqmStVpVwWGrg1uqgkgOCWo8VKqtxUlbRa5LmRaFNAQIVQZVNye-jtvNv1GGK5cb1vx8lSMQEpzyEd0d0BGe9C8GjLztdb7YeSQbl_rjw-N9qbg92E6PwRclAiG6v-AF84aeM</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Ren, Xiaofeng</creator><creator>Wei, Juncheng</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20060101</creationdate><title>Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation</title><author>Ren, Xiaofeng ; Wei, Juncheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Copolymers</topic><topic>Density functional theory</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Energy</topic><topic>Euler Lagrange equation</topic><topic>Free energy</topic><topic>Lagrange multiplier</topic><topic>Mathematics</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Optimal size</topic><topic>Spheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Juncheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiaofeng</au><au>Wei, Juncheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>66</volume><issue>3</issue><spage>1080</spage><epage>1099</epage><pages>1080-1099</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherical morphology. We show the existence of the sphere pattern and find a stability threshold, so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce the existence and the stability problems to some finite dimensional problems which are accurately solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when the size of the sample is less than the second threshold value. As the stability of the spherical lamellar pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040618771</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2006-01, Vol.66 (3), p.1080-1099 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_916024502 |
source | JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Applied mathematics Approximation Copolymers Density functional theory Eigenfunctions Eigenvalues Energy Euler Lagrange equation Free energy Lagrange multiplier Mathematics Molecules Monomers Morphology Optimal size Spheres |
title | Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Stability%20of%20Spherically%20Layered%20Solutions%20of%20the%20Diblock%20Copolymer%20Equation&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Ren,%20Xiaofeng&rft.date=2006-01-01&rft.volume=66&rft.issue=3&rft.spage=1080&rft.epage=1099&rft.pages=1080-1099&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/040618771&rft_dat=%3Cjstor_proqu%3E4096302%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916024502&rft_id=info:pmid/&rft_jstor_id=4096302&rfr_iscdi=true |