Loading…

Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation

The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherica...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on applied mathematics 2006-01, Vol.66 (3), p.1080-1099
Main Authors: Ren, Xiaofeng, Wei, Juncheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3
cites cdi_FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3
container_end_page 1099
container_issue 3
container_start_page 1080
container_title SIAM journal on applied mathematics
container_volume 66
creator Ren, Xiaofeng
Wei, Juncheng
description The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherical morphology. We show the existence of the sphere pattern and find a stability threshold, so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce the existence and the stability problems to some finite dimensional problems which are accurately solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when the size of the sample is less than the second threshold value. As the stability of the spherical lamellar pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold.
doi_str_mv 10.1137/040618771
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916024502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4096302</jstor_id><sourcerecordid>4096302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3</originalsourceid><addsrcrecordid>eNo90M9LwzAcBfAgCs7pwbuH4M1D9Zs2TZOjzPkDBh6mIF5Kln7DOrumS1Kw_70dk53e5cN78Ai5ZnDPWFY8AAfBZFGwEzJhoPKkYOnXKZkAZCJhmVLn5CKEDQBjgqsJ-Z7_1iFia5DqtqLLqFd1U8eBOkuX3Rp9bXTTDHShB_Q4Atf0sXZt2IO4RvpUrxpnfujMda4ZtujpfNfrPbkkZ1Y3Aa_-c0o-n-cfs9dk8f7yNntcJCZjaUxEyoRELEBqmStVpVwWGrg1uqgkgOCWo8VKqtxUlbRa5LmRaFNAQIVQZVNye-jtvNv1GGK5cb1vx8lSMQEpzyEd0d0BGe9C8GjLztdb7YeSQbl_rjw-N9qbg92E6PwRclAiG6v-AF84aeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916024502</pqid></control><display><type>article</type><title>Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Ren, Xiaofeng ; Wei, Juncheng</creator><creatorcontrib>Ren, Xiaofeng ; Wei, Juncheng</creatorcontrib><description>The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherical morphology. We show the existence of the sphere pattern and find a stability threshold, so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce the existence and the stability problems to some finite dimensional problems which are accurately solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when the size of the sample is less than the second threshold value. As the stability of the spherical lamellar pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/040618771</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Copolymers ; Density functional theory ; Eigenfunctions ; Eigenvalues ; Energy ; Euler Lagrange equation ; Free energy ; Lagrange multiplier ; Mathematics ; Molecules ; Monomers ; Morphology ; Optimal size ; Spheres</subject><ispartof>SIAM journal on applied mathematics, 2006-01, Vol.66 (3), p.1080-1099</ispartof><rights>Copyright 2006 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3</citedby><cites>FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4096302$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/916024502?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339,58213,58446</link.rule.ids></links><search><creatorcontrib>Ren, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Juncheng</creatorcontrib><title>Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation</title><title>SIAM journal on applied mathematics</title><description>The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherical morphology. We show the existence of the sphere pattern and find a stability threshold, so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce the existence and the stability problems to some finite dimensional problems which are accurately solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when the size of the sample is less than the second threshold value. As the stability of the spherical lamellar pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Copolymers</subject><subject>Density functional theory</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Energy</subject><subject>Euler Lagrange equation</subject><subject>Free energy</subject><subject>Lagrange multiplier</subject><subject>Mathematics</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Optimal size</subject><subject>Spheres</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90M9LwzAcBfAgCs7pwbuH4M1D9Zs2TZOjzPkDBh6mIF5Kln7DOrumS1Kw_70dk53e5cN78Ai5ZnDPWFY8AAfBZFGwEzJhoPKkYOnXKZkAZCJhmVLn5CKEDQBjgqsJ-Z7_1iFia5DqtqLLqFd1U8eBOkuX3Rp9bXTTDHShB_Q4Atf0sXZt2IO4RvpUrxpnfujMda4ZtujpfNfrPbkkZ1Y3Aa_-c0o-n-cfs9dk8f7yNntcJCZjaUxEyoRELEBqmStVpVwWGrg1uqgkgOCWo8VKqtxUlbRa5LmRaFNAQIVQZVNye-jtvNv1GGK5cb1vx8lSMQEpzyEd0d0BGe9C8GjLztdb7YeSQbl_rjw-N9qbg92E6PwRclAiG6v-AF84aeM</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Ren, Xiaofeng</creator><creator>Wei, Juncheng</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20060101</creationdate><title>Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation</title><author>Ren, Xiaofeng ; Wei, Juncheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Copolymers</topic><topic>Density functional theory</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Energy</topic><topic>Euler Lagrange equation</topic><topic>Free energy</topic><topic>Lagrange multiplier</topic><topic>Mathematics</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Optimal size</topic><topic>Spheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Juncheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiaofeng</au><au>Wei, Juncheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>66</volume><issue>3</issue><spage>1080</spage><epage>1099</epage><pages>1080-1099</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>The relatively simple Ohta-Kawasaki density functional theory for diblock copolymer melts allows us to construct and analyze exact solutions to the Euler-Lagrange equation by singular perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in the spherical morphology. We show the existence of the sphere pattern and find a stability threshold, so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce the existence and the stability problems to some finite dimensional problems which are accurately solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when the size of the sample is less than the second threshold value. As the stability of the spherical lamellar pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040618771</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 2006-01, Vol.66 (3), p.1080-1099
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_916024502
source JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Approximation
Copolymers
Density functional theory
Eigenfunctions
Eigenvalues
Energy
Euler Lagrange equation
Free energy
Lagrange multiplier
Mathematics
Molecules
Monomers
Morphology
Optimal size
Spheres
title Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Stability%20of%20Spherically%20Layered%20Solutions%20of%20the%20Diblock%20Copolymer%20Equation&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Ren,%20Xiaofeng&rft.date=2006-01-01&rft.volume=66&rft.issue=3&rft.spage=1080&rft.epage=1099&rft.pages=1080-1099&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/040618771&rft_dat=%3Cjstor_proqu%3E4096302%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-62168ee708a8599d2487a04fca7d80064f4efed895cdd8fa655c8ef20e0e9e0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916024502&rft_id=info:pmid/&rft_jstor_id=4096302&rfr_iscdi=true