Loading…

Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques

We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on applied mathematics 2004, Vol.64 (2), p.525-545
Main Authors: J. Elschner, Hsiao, G. C., Rathsfeld, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3
cites cdi_FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3
container_end_page 545
container_issue 2
container_start_page 525
container_title SIAM journal on applied mathematics
container_volume 64
creator J. Elschner
Hsiao, G. C.
Rathsfeld, A.
description We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data demonstrate the practicability of the inversion algorithm.
doi_str_mv 10.1137/S0036139902420018
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916122807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4095998</jstor_id><sourcerecordid>4095998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsfQPCweF_Nv90kRy1tFQoVW8HbkmTfakqbrUn2oJ_eXStePL2B-c0bGIQuCb4hhInbFcasJEwpTDnFmMgjNCJYFbkg9PUYjQY7H_xTdBbjpidIydUIreZBJ-ffsqfQNm4L2TPY1scUOptc67N7HaHOejFz3iXIplvYgU8x077Olvvkdu5L_5BrsO_efXQQz9FJo7cRLn7vGL3MpuvJQ75Yzh8nd4vcMsZT3hTacMOlpEYqw4khhQRam8aCMsI0hjOglNbKWgHCUFqUBoQFMNoKbYGN0fXh7z60Q2-qNm0XfF9ZKVISSiUWPUQOkA1tjAGaah_cTofPiuBqmK76N12fuTpkNjG14S_A-z2VkuwbtqFsbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916122807</pqid></control><display><type>article</type><title>Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>J. Elschner ; Hsiao, G. C. ; Rathsfeld, A.</creator><creatorcontrib>J. Elschner ; Hsiao, G. C. ; Rathsfeld, A.</creatorcontrib><description>We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data demonstrate the practicability of the inversion algorithm.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/S0036139902420018</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Angle of incidence ; Coefficients ; Conjugate gradient method ; Electromagnetism ; Finite element method ; Fourier coefficients ; Helmholtz equations ; Inverse problems ; Inverse scattering ; Optimization techniques ; Uniqueness ; Wave diffraction</subject><ispartof>SIAM journal on applied mathematics, 2004, Vol.64 (2), p.525-545</ispartof><rights>Copyright 2004 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3</citedby><cites>FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4095998$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/916122807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,4024,11688,27923,27924,27925,36060,44363,58238,58471</link.rule.ids></links><search><creatorcontrib>J. Elschner</creatorcontrib><creatorcontrib>Hsiao, G. C.</creatorcontrib><creatorcontrib>Rathsfeld, A.</creatorcontrib><title>Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques</title><title>SIAM journal on applied mathematics</title><description>We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data demonstrate the practicability of the inversion algorithm.</description><subject>Algorithms</subject><subject>Angle of incidence</subject><subject>Coefficients</subject><subject>Conjugate gradient method</subject><subject>Electromagnetism</subject><subject>Finite element method</subject><subject>Fourier coefficients</subject><subject>Helmholtz equations</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>Optimization techniques</subject><subject>Uniqueness</subject><subject>Wave diffraction</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkE9LAzEUxIMoWKsfQPCweF_Nv90kRy1tFQoVW8HbkmTfakqbrUn2oJ_eXStePL2B-c0bGIQuCb4hhInbFcasJEwpTDnFmMgjNCJYFbkg9PUYjQY7H_xTdBbjpidIydUIreZBJ-ffsqfQNm4L2TPY1scUOptc67N7HaHOejFz3iXIplvYgU8x077Olvvkdu5L_5BrsO_efXQQz9FJo7cRLn7vGL3MpuvJQ75Yzh8nd4vcMsZT3hTacMOlpEYqw4khhQRam8aCMsI0hjOglNbKWgHCUFqUBoQFMNoKbYGN0fXh7z60Q2-qNm0XfF9ZKVISSiUWPUQOkA1tjAGaah_cTofPiuBqmK76N12fuTpkNjG14S_A-z2VkuwbtqFsbA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>J. Elschner</creator><creator>Hsiao, G. C.</creator><creator>Rathsfeld, A.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2004</creationdate><title>Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques</title><author>J. Elschner ; Hsiao, G. C. ; Rathsfeld, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Angle of incidence</topic><topic>Coefficients</topic><topic>Conjugate gradient method</topic><topic>Electromagnetism</topic><topic>Finite element method</topic><topic>Fourier coefficients</topic><topic>Helmholtz equations</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>Optimization techniques</topic><topic>Uniqueness</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>J. Elschner</creatorcontrib><creatorcontrib>Hsiao, G. C.</creatorcontrib><creatorcontrib>Rathsfeld, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>J. Elschner</au><au>Hsiao, G. C.</au><au>Rathsfeld, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2004</date><risdate>2004</risdate><volume>64</volume><issue>2</issue><spage>525</spage><epage>545</epage><pages>525-545</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data demonstrate the practicability of the inversion algorithm.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036139902420018</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 2004, Vol.64 (2), p.525-545
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_916122807
source JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive
subjects Algorithms
Angle of incidence
Coefficients
Conjugate gradient method
Electromagnetism
Finite element method
Fourier coefficients
Helmholtz equations
Inverse problems
Inverse scattering
Optimization techniques
Uniqueness
Wave diffraction
title Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grating%20Profile%20Reconstruction%20Based%20on%20Finite%20Elements%20and%20Optimization%20Techniques&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=J.%20Elschner&rft.date=2004&rft.volume=64&rft.issue=2&rft.spage=525&rft.epage=545&rft.pages=525-545&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/S0036139902420018&rft_dat=%3Cjstor_proqu%3E4095998%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916122807&rft_id=info:pmid/&rft_jstor_id=4095998&rfr_iscdi=true