Loading…
Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques
We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the...
Saved in:
Published in: | SIAM journal on applied mathematics 2004, Vol.64 (2), p.525-545 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3 |
container_end_page | 545 |
container_issue | 2 |
container_start_page | 525 |
container_title | SIAM journal on applied mathematics |
container_volume | 64 |
creator | J. Elschner Hsiao, G. C. Rathsfeld, A. |
description | We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data demonstrate the practicability of the inversion algorithm. |
doi_str_mv | 10.1137/S0036139902420018 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916122807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4095998</jstor_id><sourcerecordid>4095998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsfQPCweF_Nv90kRy1tFQoVW8HbkmTfakqbrUn2oJ_eXStePL2B-c0bGIQuCb4hhInbFcasJEwpTDnFmMgjNCJYFbkg9PUYjQY7H_xTdBbjpidIydUIreZBJ-ffsqfQNm4L2TPY1scUOptc67N7HaHOejFz3iXIplvYgU8x077Olvvkdu5L_5BrsO_efXQQz9FJo7cRLn7vGL3MpuvJQ75Yzh8nd4vcMsZT3hTacMOlpEYqw4khhQRam8aCMsI0hjOglNbKWgHCUFqUBoQFMNoKbYGN0fXh7z60Q2-qNm0XfF9ZKVISSiUWPUQOkA1tjAGaah_cTofPiuBqmK76N12fuTpkNjG14S_A-z2VkuwbtqFsbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916122807</pqid></control><display><type>article</type><title>Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>J. Elschner ; Hsiao, G. C. ; Rathsfeld, A.</creator><creatorcontrib>J. Elschner ; Hsiao, G. C. ; Rathsfeld, A.</creatorcontrib><description>We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data demonstrate the practicability of the inversion algorithm.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/S0036139902420018</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Angle of incidence ; Coefficients ; Conjugate gradient method ; Electromagnetism ; Finite element method ; Fourier coefficients ; Helmholtz equations ; Inverse problems ; Inverse scattering ; Optimization techniques ; Uniqueness ; Wave diffraction</subject><ispartof>SIAM journal on applied mathematics, 2004, Vol.64 (2), p.525-545</ispartof><rights>Copyright 2004 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3</citedby><cites>FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4095998$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/916122807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,4024,11688,27923,27924,27925,36060,44363,58238,58471</link.rule.ids></links><search><creatorcontrib>J. Elschner</creatorcontrib><creatorcontrib>Hsiao, G. C.</creatorcontrib><creatorcontrib>Rathsfeld, A.</creatorcontrib><title>Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques</title><title>SIAM journal on applied mathematics</title><description>We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data demonstrate the practicability of the inversion algorithm.</description><subject>Algorithms</subject><subject>Angle of incidence</subject><subject>Coefficients</subject><subject>Conjugate gradient method</subject><subject>Electromagnetism</subject><subject>Finite element method</subject><subject>Fourier coefficients</subject><subject>Helmholtz equations</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>Optimization techniques</subject><subject>Uniqueness</subject><subject>Wave diffraction</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkE9LAzEUxIMoWKsfQPCweF_Nv90kRy1tFQoVW8HbkmTfakqbrUn2oJ_eXStePL2B-c0bGIQuCb4hhInbFcasJEwpTDnFmMgjNCJYFbkg9PUYjQY7H_xTdBbjpidIydUIreZBJ-ffsqfQNm4L2TPY1scUOptc67N7HaHOejFz3iXIplvYgU8x077Olvvkdu5L_5BrsO_efXQQz9FJo7cRLn7vGL3MpuvJQ75Yzh8nd4vcMsZT3hTacMOlpEYqw4khhQRam8aCMsI0hjOglNbKWgHCUFqUBoQFMNoKbYGN0fXh7z60Q2-qNm0XfF9ZKVISSiUWPUQOkA1tjAGaah_cTofPiuBqmK76N12fuTpkNjG14S_A-z2VkuwbtqFsbA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>J. Elschner</creator><creator>Hsiao, G. C.</creator><creator>Rathsfeld, A.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2004</creationdate><title>Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques</title><author>J. Elschner ; Hsiao, G. C. ; Rathsfeld, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Angle of incidence</topic><topic>Coefficients</topic><topic>Conjugate gradient method</topic><topic>Electromagnetism</topic><topic>Finite element method</topic><topic>Fourier coefficients</topic><topic>Helmholtz equations</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>Optimization techniques</topic><topic>Uniqueness</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>J. Elschner</creatorcontrib><creatorcontrib>Hsiao, G. C.</creatorcontrib><creatorcontrib>Rathsfeld, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>J. Elschner</au><au>Hsiao, G. C.</au><au>Rathsfeld, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2004</date><risdate>2004</risdate><volume>64</volume><issue>2</issue><spage>525</spage><epage>545</epage><pages>525-545</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>We consider the inverse diffraction problem to recover a two-dimensional periodic structure from scattered waves measured above and beneath the structure. The task is reformulated in the form of an optimization problem including special regularization terms. The solvability and the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data demonstrate the practicability of the inversion algorithm.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036139902420018</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2004, Vol.64 (2), p.525-545 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_916122807 |
source | JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Angle of incidence Coefficients Conjugate gradient method Electromagnetism Finite element method Fourier coefficients Helmholtz equations Inverse problems Inverse scattering Optimization techniques Uniqueness Wave diffraction |
title | Grating Profile Reconstruction Based on Finite Elements and Optimization Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grating%20Profile%20Reconstruction%20Based%20on%20Finite%20Elements%20and%20Optimization%20Techniques&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=J.%20Elschner&rft.date=2004&rft.volume=64&rft.issue=2&rft.spage=525&rft.epage=545&rft.pages=525-545&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/S0036139902420018&rft_dat=%3Cjstor_proqu%3E4095998%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-f5ab4b4882b89b41b158e2dbfce9b7bfb43e222d9cc7e7b2256be7ceebac7ace3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916122807&rft_id=info:pmid/&rft_jstor_id=4095998&rfr_iscdi=true |