Loading…

IMPROVEMENT OF 1,3-DIHYDROXYACETONE PRODUCTION FROM Gluconobacter oxydans BY ION BEAM IMPLANTATION

Improvement of dihydroxyacetone (DHA) production by mutagenesis of ion beam implantation and medium optimization using response-surface methodology (RSM) were investigated in this work. More than 1000 mutant strains were selected through a mutagenesis method using N⁺ ions implantation with a dose of...

Full description

Saved in:
Bibliographic Details
Published in:Preparative biochemistry & biotechnology 2012-01, Vol.42 (1), p.15-28
Main Authors: Hu, Zhong-Ce, Liu, Zhi-Qiang, Xu, Jian-Miao, Zheng, Yu-Guo, Shen, Yin-Chu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-cfc3fa762a071bccfbb6292a23f8710d3892e8ea7f5649bc11f2021723492fa3
cites cdi_FETCH-LOGICAL-c446t-cfc3fa762a071bccfbb6292a23f8710d3892e8ea7f5649bc11f2021723492fa3
container_end_page 28
container_issue 1
container_start_page 15
container_title Preparative biochemistry & biotechnology
container_volume 42
creator Hu, Zhong-Ce
Liu, Zhi-Qiang
Xu, Jian-Miao
Zheng, Yu-Guo
Shen, Yin-Chu
description Improvement of dihydroxyacetone (DHA) production by mutagenesis of ion beam implantation and medium optimization using response-surface methodology (RSM) were investigated in this work. More than 1000 mutant strains were selected through a mutagenesis method using N⁺ ions implantation with a dose of 60 × (2.6 × 10¹³) ions/cm² and energy of 10 keV. Several high-yield mutant strains were showed the potent application for DHA production and the genetically stable mutant strain G. oxydans ZJB09113 was selected for optimization of cultivation condition by RSM. The optimal medium for DHA fermentation is composed (in g/L) of yeast extract 4.88, CaCO₃ 2.00, and glycerol 52.86 mL/L (initial pH 4.89). The maximal DHA concentration of 40.0 g/L was achieved after 24 hr of shaken flask fermentation at 30°C with 150 rpm, and 196.3% increase in DHA production in comparison with unoptimized conditions.
doi_str_mv 10.1080/10826068.2011.563400
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_916336281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>916150770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-cfc3fa762a071bccfbb6292a23f8710d3892e8ea7f5649bc11f2021723492fa3</originalsourceid><addsrcrecordid>eNqFkkFv0zAYhiMEYmPwDxBEXOBAir_PiZ2cUNamW6W2QSVD9GQ5bow6pfGwG0H_PY6yIcQBLv58eN73k_U4CF4CmQBJyQd_ICMsnSABmCSMxoQ8Cs4hoRghZvzxH_ez4Jlzt4RAxiF9GpwhIs04Sc6DerH6tCm_FKtiXYXlPIT3NJotrrezTfl1m0-LqlwXoSdmN9NqUa7D-aZchVdtr0xnaqmOjQ3Nz9NOdi683IYDcVnkq9C3LvN1lQ-Z58ETLVvXvLifF0E1L6rpdbQsrxbTfBmpOGbHSGlFteQMJeFQK6XrmmGGEqlOOZAdTTNs0kZynbA4qxWARoLAkcYZakkvgrdj7Z013_vGHcVh71TTtrJrTO9EBgwSwjnx5Lt_kgCYIGWUxB598xd6a3rb-WcMfZQyTMFD8Qgpa5yzjRZ3dn-Q9iSAiMGVeHAlBldidOVjr-67-_rQ7H6HHuR44OMI7Dtt7EH-MLbdiaM8tcZqKzu1d4L-Z8XrsUFLI-Q36wM3nz3A_FdgCDSjvwBrLaO6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916336281</pqid></control><display><type>article</type><title>IMPROVEMENT OF 1,3-DIHYDROXYACETONE PRODUCTION FROM Gluconobacter oxydans BY ION BEAM IMPLANTATION</title><source>Taylor and Francis Science and Technology Collection</source><creator>Hu, Zhong-Ce ; Liu, Zhi-Qiang ; Xu, Jian-Miao ; Zheng, Yu-Guo ; Shen, Yin-Chu</creator><creatorcontrib>Hu, Zhong-Ce ; Liu, Zhi-Qiang ; Xu, Jian-Miao ; Zheng, Yu-Guo ; Shen, Yin-Chu</creatorcontrib><description>Improvement of dihydroxyacetone (DHA) production by mutagenesis of ion beam implantation and medium optimization using response-surface methodology (RSM) were investigated in this work. More than 1000 mutant strains were selected through a mutagenesis method using N⁺ ions implantation with a dose of 60 × (2.6 × 10¹³) ions/cm² and energy of 10 keV. Several high-yield mutant strains were showed the potent application for DHA production and the genetically stable mutant strain G. oxydans ZJB09113 was selected for optimization of cultivation condition by RSM. The optimal medium for DHA fermentation is composed (in g/L) of yeast extract 4.88, CaCO₃ 2.00, and glycerol 52.86 mL/L (initial pH 4.89). The maximal DHA concentration of 40.0 g/L was achieved after 24 hr of shaken flask fermentation at 30°C with 150 rpm, and 196.3% increase in DHA production in comparison with unoptimized conditions.</description><identifier>ISSN: 1532-2297</identifier><identifier>ISSN: 1082-6068</identifier><identifier>EISSN: 1532-2297</identifier><identifier>DOI: 10.1080/10826068.2011.563400</identifier><identifier>PMID: 22239705</identifier><language>eng</language><publisher>England: Taylor &amp; Francis Group</publisher><subject>Analysis of Variance ; Batch Cell Culture Techniques - methods ; Biochemistry ; Bioreactors - microbiology ; Culture Media - chemistry ; Culture Media - metabolism ; dihydroxyacetone ; Dihydroxyacetone - biosynthesis ; Fermentation ; Gluconobacter oxydans ; Gluconobacter oxydans - genetics ; Gluconobacter oxydans - metabolism ; Gluconobacter oxydans - radiation effects ; glycerol ; Glycerol - chemistry ; Glycerol - metabolism ; Gram-negative bacteria ; Indexing in process ; ion beam implantation ; Ion beams ; Ions - chemistry ; Ions - metabolism ; Mutagenesis ; Mutation ; Mutation - genetics ; Mutation - radiation effects ; Nitrogen - chemistry ; Nitrogen - metabolism ; response-surface methodology</subject><ispartof>Preparative biochemistry &amp; biotechnology, 2012-01, Vol.42 (1), p.15-28</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor &amp; Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-cfc3fa762a071bccfbb6292a23f8710d3892e8ea7f5649bc11f2021723492fa3</citedby><cites>FETCH-LOGICAL-c446t-cfc3fa762a071bccfbb6292a23f8710d3892e8ea7f5649bc11f2021723492fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22239705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Zhong-Ce</creatorcontrib><creatorcontrib>Liu, Zhi-Qiang</creatorcontrib><creatorcontrib>Xu, Jian-Miao</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><creatorcontrib>Shen, Yin-Chu</creatorcontrib><title>IMPROVEMENT OF 1,3-DIHYDROXYACETONE PRODUCTION FROM Gluconobacter oxydans BY ION BEAM IMPLANTATION</title><title>Preparative biochemistry &amp; biotechnology</title><addtitle>Prep Biochem Biotechnol</addtitle><description>Improvement of dihydroxyacetone (DHA) production by mutagenesis of ion beam implantation and medium optimization using response-surface methodology (RSM) were investigated in this work. More than 1000 mutant strains were selected through a mutagenesis method using N⁺ ions implantation with a dose of 60 × (2.6 × 10¹³) ions/cm² and energy of 10 keV. Several high-yield mutant strains were showed the potent application for DHA production and the genetically stable mutant strain G. oxydans ZJB09113 was selected for optimization of cultivation condition by RSM. The optimal medium for DHA fermentation is composed (in g/L) of yeast extract 4.88, CaCO₃ 2.00, and glycerol 52.86 mL/L (initial pH 4.89). The maximal DHA concentration of 40.0 g/L was achieved after 24 hr of shaken flask fermentation at 30°C with 150 rpm, and 196.3% increase in DHA production in comparison with unoptimized conditions.</description><subject>Analysis of Variance</subject><subject>Batch Cell Culture Techniques - methods</subject><subject>Biochemistry</subject><subject>Bioreactors - microbiology</subject><subject>Culture Media - chemistry</subject><subject>Culture Media - metabolism</subject><subject>dihydroxyacetone</subject><subject>Dihydroxyacetone - biosynthesis</subject><subject>Fermentation</subject><subject>Gluconobacter oxydans</subject><subject>Gluconobacter oxydans - genetics</subject><subject>Gluconobacter oxydans - metabolism</subject><subject>Gluconobacter oxydans - radiation effects</subject><subject>glycerol</subject><subject>Glycerol - chemistry</subject><subject>Glycerol - metabolism</subject><subject>Gram-negative bacteria</subject><subject>Indexing in process</subject><subject>ion beam implantation</subject><subject>Ion beams</subject><subject>Ions - chemistry</subject><subject>Ions - metabolism</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Mutation - radiation effects</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen - metabolism</subject><subject>response-surface methodology</subject><issn>1532-2297</issn><issn>1082-6068</issn><issn>1532-2297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkkFv0zAYhiMEYmPwDxBEXOBAir_PiZ2cUNamW6W2QSVD9GQ5bow6pfGwG0H_PY6yIcQBLv58eN73k_U4CF4CmQBJyQd_ICMsnSABmCSMxoQ8Cs4hoRghZvzxH_ez4Jlzt4RAxiF9GpwhIs04Sc6DerH6tCm_FKtiXYXlPIT3NJotrrezTfl1m0-LqlwXoSdmN9NqUa7D-aZchVdtr0xnaqmOjQ3Nz9NOdi683IYDcVnkq9C3LvN1lQ-Z58ETLVvXvLifF0E1L6rpdbQsrxbTfBmpOGbHSGlFteQMJeFQK6XrmmGGEqlOOZAdTTNs0kZynbA4qxWARoLAkcYZakkvgrdj7Z013_vGHcVh71TTtrJrTO9EBgwSwjnx5Lt_kgCYIGWUxB598xd6a3rb-WcMfZQyTMFD8Qgpa5yzjRZ3dn-Q9iSAiMGVeHAlBldidOVjr-67-_rQ7H6HHuR44OMI7Dtt7EH-MLbdiaM8tcZqKzu1d4L-Z8XrsUFLI-Q36wM3nz3A_FdgCDSjvwBrLaO6</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Hu, Zhong-Ce</creator><creator>Liu, Zhi-Qiang</creator><creator>Xu, Jian-Miao</creator><creator>Zheng, Yu-Guo</creator><creator>Shen, Yin-Chu</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>IMPROVEMENT OF 1,3-DIHYDROXYACETONE PRODUCTION FROM Gluconobacter oxydans BY ION BEAM IMPLANTATION</title><author>Hu, Zhong-Ce ; Liu, Zhi-Qiang ; Xu, Jian-Miao ; Zheng, Yu-Guo ; Shen, Yin-Chu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-cfc3fa762a071bccfbb6292a23f8710d3892e8ea7f5649bc11f2021723492fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis of Variance</topic><topic>Batch Cell Culture Techniques - methods</topic><topic>Biochemistry</topic><topic>Bioreactors - microbiology</topic><topic>Culture Media - chemistry</topic><topic>Culture Media - metabolism</topic><topic>dihydroxyacetone</topic><topic>Dihydroxyacetone - biosynthesis</topic><topic>Fermentation</topic><topic>Gluconobacter oxydans</topic><topic>Gluconobacter oxydans - genetics</topic><topic>Gluconobacter oxydans - metabolism</topic><topic>Gluconobacter oxydans - radiation effects</topic><topic>glycerol</topic><topic>Glycerol - chemistry</topic><topic>Glycerol - metabolism</topic><topic>Gram-negative bacteria</topic><topic>Indexing in process</topic><topic>ion beam implantation</topic><topic>Ion beams</topic><topic>Ions - chemistry</topic><topic>Ions - metabolism</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Mutation - radiation effects</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen - metabolism</topic><topic>response-surface methodology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhong-Ce</creatorcontrib><creatorcontrib>Liu, Zhi-Qiang</creatorcontrib><creatorcontrib>Xu, Jian-Miao</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><creatorcontrib>Shen, Yin-Chu</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Preparative biochemistry &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zhong-Ce</au><au>Liu, Zhi-Qiang</au><au>Xu, Jian-Miao</au><au>Zheng, Yu-Guo</au><au>Shen, Yin-Chu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMPROVEMENT OF 1,3-DIHYDROXYACETONE PRODUCTION FROM Gluconobacter oxydans BY ION BEAM IMPLANTATION</atitle><jtitle>Preparative biochemistry &amp; biotechnology</jtitle><addtitle>Prep Biochem Biotechnol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>42</volume><issue>1</issue><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>1532-2297</issn><issn>1082-6068</issn><eissn>1532-2297</eissn><abstract>Improvement of dihydroxyacetone (DHA) production by mutagenesis of ion beam implantation and medium optimization using response-surface methodology (RSM) were investigated in this work. More than 1000 mutant strains were selected through a mutagenesis method using N⁺ ions implantation with a dose of 60 × (2.6 × 10¹³) ions/cm² and energy of 10 keV. Several high-yield mutant strains were showed the potent application for DHA production and the genetically stable mutant strain G. oxydans ZJB09113 was selected for optimization of cultivation condition by RSM. The optimal medium for DHA fermentation is composed (in g/L) of yeast extract 4.88, CaCO₃ 2.00, and glycerol 52.86 mL/L (initial pH 4.89). The maximal DHA concentration of 40.0 g/L was achieved after 24 hr of shaken flask fermentation at 30°C with 150 rpm, and 196.3% increase in DHA production in comparison with unoptimized conditions.</abstract><cop>England</cop><pub>Taylor &amp; Francis Group</pub><pmid>22239705</pmid><doi>10.1080/10826068.2011.563400</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-2297
ispartof Preparative biochemistry & biotechnology, 2012-01, Vol.42 (1), p.15-28
issn 1532-2297
1082-6068
1532-2297
language eng
recordid cdi_proquest_journals_916336281
source Taylor and Francis Science and Technology Collection
subjects Analysis of Variance
Batch Cell Culture Techniques - methods
Biochemistry
Bioreactors - microbiology
Culture Media - chemistry
Culture Media - metabolism
dihydroxyacetone
Dihydroxyacetone - biosynthesis
Fermentation
Gluconobacter oxydans
Gluconobacter oxydans - genetics
Gluconobacter oxydans - metabolism
Gluconobacter oxydans - radiation effects
glycerol
Glycerol - chemistry
Glycerol - metabolism
Gram-negative bacteria
Indexing in process
ion beam implantation
Ion beams
Ions - chemistry
Ions - metabolism
Mutagenesis
Mutation
Mutation - genetics
Mutation - radiation effects
Nitrogen - chemistry
Nitrogen - metabolism
response-surface methodology
title IMPROVEMENT OF 1,3-DIHYDROXYACETONE PRODUCTION FROM Gluconobacter oxydans BY ION BEAM IMPLANTATION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMPROVEMENT%20OF%201,3-DIHYDROXYACETONE%20PRODUCTION%20FROM%20Gluconobacter%20oxydans%20BY%20ION%20BEAM%20IMPLANTATION&rft.jtitle=Preparative%20biochemistry%20&%20biotechnology&rft.au=Hu,%20Zhong-Ce&rft.date=2012-01-01&rft.volume=42&rft.issue=1&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=1532-2297&rft.eissn=1532-2297&rft_id=info:doi/10.1080/10826068.2011.563400&rft_dat=%3Cproquest_infor%3E916150770%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-cfc3fa762a071bccfbb6292a23f8710d3892e8ea7f5649bc11f2021723492fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916336281&rft_id=info:pmid/22239705&rfr_iscdi=true