Loading…

Large-amplitude electrostatic waves observed at a supercritical interplanetary shock

We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research 2010-12, Vol.115 (A12), p.n/a
Main Authors: Wilson III, L. B., Cattell, C. A., Kellogg, P. J., Goetz, K., Kersten, K., Kasper, J. C., Szabo, A., Wilber, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
ISSN:0148-0227
2169-9380
2156-2202
2169-9402
DOI:10.1029/2010JA015332