Loading…
Gas Phase Decomposition by the Lindemann Mechanism
Several mechanisms have been proposed to explain observed phenomenon in gas phase decompositions, yet few theoretical solutions exist. One set of simple mechanisms is proposed by Christiansen and Lindemann [K. J. Laidler, McGraw-Hill, New York, 1950, pp. 76-85], which can be modeled as follows: \beg...
Saved in:
Published in: | SIAM journal on applied mathematics 1991-12, Vol.51 (6), p.1489-1497 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c271t-529d7cfafd77822492a8bd1644b572895077dd626cd180818fbfe7ac8e32d35f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c271t-529d7cfafd77822492a8bd1644b572895077dd626cd180818fbfe7ac8e32d35f3 |
container_end_page | 1497 |
container_issue | 6 |
container_start_page | 1489 |
container_title | SIAM journal on applied mathematics |
container_volume | 51 |
creator | Cole, S. L. Wilder, J. W. |
description | Several mechanisms have been proposed to explain observed phenomenon in gas phase decompositions, yet few theoretical solutions exist. One set of simple mechanisms is proposed by Christiansen and Lindemann [K. J. Laidler, McGraw-Hill, New York, 1950, pp. 76-85], which can be modeled as follows: \begin{equation*}\tag{(i)}A + A \rightleftharpoons A^\ast + A,\end{equation*} \begin{equation*}\tag{(ii)}A + M \rightleftharpoons A^\ast + M,\end{equation*} \begin{equation*}\tag{(iii)}A^\ast \rightarrow P,\end{equation*} where A represents a normal reactant molecule, A* an activated A molecule, M an inert substance, and P the decomposition products. In this mechanism, an A molecule can be activated by collision with another A molecule (step (i)) or an inert molecule M (step (ii)). The activated molecule can deactivate by a collision with an A or M molecule (steps (i) or (ii)) or decompose to form products (step (iii)). This scheme is modeled by a nonlinear set of ordinary differential equations. This paper shows that under normal laboratory conditions these equations can be treated as weakly nonlinear. Perturbation solutions are derived and conclusions given. |
doi_str_mv | 10.1137/0151074 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916855896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2102354</jstor_id><sourcerecordid>2102354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-529d7cfafd77822492a8bd1644b572895077dd626cd180818fbfe7ac8e32d35f3</originalsourceid><addsrcrecordid>eNo90E1LxDAYBOAgCtZV_AMeihdP1bxJ0yRHWXUVKnpQ8BbSfNAW29Ske9h_b2UXT3N5mIFB6BLwLQDldxgYYF4eoQywZAUH8nWMMoxpVQCV8hSdpdRjDFCVMkNko1P-3urk8gdnwjCF1M1dGPNml8-ty-tutG7Q45i_OtPqsUvDOTrx-ju5i0Ou0OfT48f6uajfNi_r-7owhMNcMCItN157y7kgpJREi8Yuq2XDOBGSYc6trUhlLAgsQPjGO66NcJRYyjxdoet97xTDz9alWfVhG8dlUkmoBGNCVgu62SMTQ0rReTXFbtBxpwCrvz_U4Y9FXu1ln-YQ_xkBTCgr6S8dR1kj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916855896</pqid></control><display><type>article</type><title>Gas Phase Decomposition by the Lindemann Mechanism</title><source>SIAM Journals Online</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><creator>Cole, S. L. ; Wilder, J. W.</creator><creatorcontrib>Cole, S. L. ; Wilder, J. W.</creatorcontrib><description>Several mechanisms have been proposed to explain observed phenomenon in gas phase decompositions, yet few theoretical solutions exist. One set of simple mechanisms is proposed by Christiansen and Lindemann [K. J. Laidler, McGraw-Hill, New York, 1950, pp. 76-85], which can be modeled as follows: \begin{equation*}\tag{(i)}A + A \rightleftharpoons A^\ast + A,\end{equation*} \begin{equation*}\tag{(ii)}A + M \rightleftharpoons A^\ast + M,\end{equation*} \begin{equation*}\tag{(iii)}A^\ast \rightarrow P,\end{equation*} where A represents a normal reactant molecule, A* an activated A molecule, M an inert substance, and P the decomposition products. In this mechanism, an A molecule can be activated by collision with another A molecule (step (i)) or an inert molecule M (step (ii)). The activated molecule can deactivate by a collision with an A or M molecule (steps (i) or (ii)) or decompose to form products (step (iii)). This scheme is modeled by a nonlinear set of ordinary differential equations. This paper shows that under normal laboratory conditions these equations can be treated as weakly nonlinear. Perturbation solutions are derived and conclusions given.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0151074</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Decomposition ; Intermediate variables ; Mathematical constants ; Molecules ; Ordinary differential equations ; Vapor phases</subject><ispartof>SIAM journal on applied mathematics, 1991-12, Vol.51 (6), p.1489-1497</ispartof><rights>Copyright 1991 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1991 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-529d7cfafd77822492a8bd1644b572895077dd626cd180818fbfe7ac8e32d35f3</citedby><cites>FETCH-LOGICAL-c271t-529d7cfafd77822492a8bd1644b572895077dd626cd180818fbfe7ac8e32d35f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2102354$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/916855896?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363,58238,58471</link.rule.ids></links><search><creatorcontrib>Cole, S. L.</creatorcontrib><creatorcontrib>Wilder, J. W.</creatorcontrib><title>Gas Phase Decomposition by the Lindemann Mechanism</title><title>SIAM journal on applied mathematics</title><description>Several mechanisms have been proposed to explain observed phenomenon in gas phase decompositions, yet few theoretical solutions exist. One set of simple mechanisms is proposed by Christiansen and Lindemann [K. J. Laidler, McGraw-Hill, New York, 1950, pp. 76-85], which can be modeled as follows: \begin{equation*}\tag{(i)}A + A \rightleftharpoons A^\ast + A,\end{equation*} \begin{equation*}\tag{(ii)}A + M \rightleftharpoons A^\ast + M,\end{equation*} \begin{equation*}\tag{(iii)}A^\ast \rightarrow P,\end{equation*} where A represents a normal reactant molecule, A* an activated A molecule, M an inert substance, and P the decomposition products. In this mechanism, an A molecule can be activated by collision with another A molecule (step (i)) or an inert molecule M (step (ii)). The activated molecule can deactivate by a collision with an A or M molecule (steps (i) or (ii)) or decompose to form products (step (iii)). This scheme is modeled by a nonlinear set of ordinary differential equations. This paper shows that under normal laboratory conditions these equations can be treated as weakly nonlinear. Perturbation solutions are derived and conclusions given.</description><subject>Decomposition</subject><subject>Intermediate variables</subject><subject>Mathematical constants</subject><subject>Molecules</subject><subject>Ordinary differential equations</subject><subject>Vapor phases</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo90E1LxDAYBOAgCtZV_AMeihdP1bxJ0yRHWXUVKnpQ8BbSfNAW29Ske9h_b2UXT3N5mIFB6BLwLQDldxgYYF4eoQywZAUH8nWMMoxpVQCV8hSdpdRjDFCVMkNko1P-3urk8gdnwjCF1M1dGPNml8-ty-tutG7Q45i_OtPqsUvDOTrx-ju5i0Ou0OfT48f6uajfNi_r-7owhMNcMCItN157y7kgpJREi8Yuq2XDOBGSYc6trUhlLAgsQPjGO66NcJRYyjxdoet97xTDz9alWfVhG8dlUkmoBGNCVgu62SMTQ0rReTXFbtBxpwCrvz_U4Y9FXu1ln-YQ_xkBTCgr6S8dR1kj</recordid><startdate>19911201</startdate><enddate>19911201</enddate><creator>Cole, S. L.</creator><creator>Wilder, J. W.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19911201</creationdate><title>Gas Phase Decomposition by the Lindemann Mechanism</title><author>Cole, S. L. ; Wilder, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-529d7cfafd77822492a8bd1644b572895077dd626cd180818fbfe7ac8e32d35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Decomposition</topic><topic>Intermediate variables</topic><topic>Mathematical constants</topic><topic>Molecules</topic><topic>Ordinary differential equations</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cole, S. L.</creatorcontrib><creatorcontrib>Wilder, J. W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career and Technical Education</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cole, S. L.</au><au>Wilder, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Phase Decomposition by the Lindemann Mechanism</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1991-12-01</date><risdate>1991</risdate><volume>51</volume><issue>6</issue><spage>1489</spage><epage>1497</epage><pages>1489-1497</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>Several mechanisms have been proposed to explain observed phenomenon in gas phase decompositions, yet few theoretical solutions exist. One set of simple mechanisms is proposed by Christiansen and Lindemann [K. J. Laidler, McGraw-Hill, New York, 1950, pp. 76-85], which can be modeled as follows: \begin{equation*}\tag{(i)}A + A \rightleftharpoons A^\ast + A,\end{equation*} \begin{equation*}\tag{(ii)}A + M \rightleftharpoons A^\ast + M,\end{equation*} \begin{equation*}\tag{(iii)}A^\ast \rightarrow P,\end{equation*} where A represents a normal reactant molecule, A* an activated A molecule, M an inert substance, and P the decomposition products. In this mechanism, an A molecule can be activated by collision with another A molecule (step (i)) or an inert molecule M (step (ii)). The activated molecule can deactivate by a collision with an A or M molecule (steps (i) or (ii)) or decompose to form products (step (iii)). This scheme is modeled by a nonlinear set of ordinary differential equations. This paper shows that under normal laboratory conditions these equations can be treated as weakly nonlinear. Perturbation solutions are derived and conclusions given.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0151074</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 1991-12, Vol.51 (6), p.1489-1497 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_916855896 |
source | SIAM Journals Online; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global |
subjects | Decomposition Intermediate variables Mathematical constants Molecules Ordinary differential equations Vapor phases |
title | Gas Phase Decomposition by the Lindemann Mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Phase%20Decomposition%20by%20the%20Lindemann%20Mechanism&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Cole,%20S.%20L.&rft.date=1991-12-01&rft.volume=51&rft.issue=6&rft.spage=1489&rft.epage=1497&rft.pages=1489-1497&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/0151074&rft_dat=%3Cjstor_proqu%3E2102354%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271t-529d7cfafd77822492a8bd1644b572895077dd626cd180818fbfe7ac8e32d35f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916855896&rft_id=info:pmid/&rft_jstor_id=2102354&rfr_iscdi=true |