Loading…
Information-Theoretic Approach to Optimal Differential Fault Analysis
This paper presents a comprehensive analysis of differential fault analysis (DFA) attacks on the Advanced Encryption Standard (AES) from an information-theoretic perspective. Injecting faults into cryptosystems is categorized as an active at tack where attackers induce an error in operations to retr...
Saved in:
Published in: | IEEE transactions on information forensics and security 2012-02, Vol.7 (1), p.109-120 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-4bfd5620bcd5bb8661ec6a18cef5abf5ef9adf5eb26601d3c0110ca20fbf75e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-4bfd5620bcd5bb8661ec6a18cef5abf5ef9adf5eb26601d3c0110ca20fbf75e73 |
container_end_page | 120 |
container_issue | 1 |
container_start_page | 109 |
container_title | IEEE transactions on information forensics and security |
container_volume | 7 |
creator | Sakiyama, K. Li, Y. Ohta, K. Iwamoto, M. |
description | This paper presents a comprehensive analysis of differential fault analysis (DFA) attacks on the Advanced Encryption Standard (AES) from an information-theoretic perspective. Injecting faults into cryptosystems is categorized as an active at tack where attackers induce an error in operations to retrieve the secret internal information, e.g., the secret key of ciphers. Here, we consider DFA attacks as equivalent to a special kind of passive attack where attackers can obtain leaked information without measurement noise. The DFA attacks are regarded as a conversion process from the leaked information to the secret key. Each fault model defines an upper bound for the amount of leaked information. The optimal DFA attacks should be able to exploit fully the leaked information in order to retrieve the secret key with a practical level of complexity. This paper discusses a new DFA methodology to achieve the optimal DFA attack by deriving the amount of the leaked information for various fault models from an information-theoretic perspective. We review several previous DFA at tacks on AES variants to check the optimality of their attacks. We also propose improved DFA attacks on AES-192 and AES-256 that reach the theoretical limits. |
doi_str_mv | 10.1109/TIFS.2011.2174984 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_916956952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6071005</ieee_id><sourcerecordid>2565823111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-4bfd5620bcd5bb8661ec6a18cef5abf5ef9adf5eb26601d3c0110ca20fbf75e73</originalsourceid><addsrcrecordid>eNo9UEFqwzAQFKWFpmkfUHoxvTvVypZsH0Mat4FADk3PQpIlouBYrqQc8vsqJAQWZhdmlplB6BXwDAA3H9tV-zMjGGBGoCqburxDE6CU5QwTuL_tUDyipxD2GJclsHqClqvBOH8Q0boh3-608zpalc3H0Tuhdll02WaM9iD67NMao70eok1HK459zOaD6E_Bhmf0YEQf9MsVp-i3XW4X3_l687VazNe5Kmgd81KajjKCpeqolDVjoBUTUCttqJCGatOILoEkLFntCpXyYCUINtJUVFfFFL1f_iZ3f0cdIt-7o08mAm-ANTQNSSS4kJR3IXht-OhTAH_igPm5LH4ui5_L4teykubtorFa6xuf4QowpsU_n09m0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916956952</pqid></control><display><type>article</type><title>Information-Theoretic Approach to Optimal Differential Fault Analysis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sakiyama, K. ; Li, Y. ; Ohta, K. ; Iwamoto, M.</creator><creatorcontrib>Sakiyama, K. ; Li, Y. ; Ohta, K. ; Iwamoto, M.</creatorcontrib><description>This paper presents a comprehensive analysis of differential fault analysis (DFA) attacks on the Advanced Encryption Standard (AES) from an information-theoretic perspective. Injecting faults into cryptosystems is categorized as an active at tack where attackers induce an error in operations to retrieve the secret internal information, e.g., the secret key of ciphers. Here, we consider DFA attacks as equivalent to a special kind of passive attack where attackers can obtain leaked information without measurement noise. The DFA attacks are regarded as a conversion process from the leaked information to the secret key. Each fault model defines an upper bound for the amount of leaked information. The optimal DFA attacks should be able to exploit fully the leaked information in order to retrieve the secret key with a practical level of complexity. This paper discusses a new DFA methodology to achieve the optimal DFA attack by deriving the amount of the leaked information for various fault models from an information-theoretic perspective. We review several previous DFA at tacks on AES variants to check the optimality of their attacks. We also propose improved DFA attacks on AES-192 and AES-256 that reach the theoretical limits.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2011.2174984</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced encryption standard (AES) ; Algorithm design and analysis ; Complexity theory ; differential fault analysis (DFA) ; Doped fiber amplifiers ; Encryption ; information leakage ; Leaking of information ; Timing ; Upper bound</subject><ispartof>IEEE transactions on information forensics and security, 2012-02, Vol.7 (1), p.109-120</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-4bfd5620bcd5bb8661ec6a18cef5abf5ef9adf5eb26601d3c0110ca20fbf75e73</citedby><cites>FETCH-LOGICAL-c358t-4bfd5620bcd5bb8661ec6a18cef5abf5ef9adf5eb26601d3c0110ca20fbf75e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6071005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Sakiyama, K.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Ohta, K.</creatorcontrib><creatorcontrib>Iwamoto, M.</creatorcontrib><title>Information-Theoretic Approach to Optimal Differential Fault Analysis</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>This paper presents a comprehensive analysis of differential fault analysis (DFA) attacks on the Advanced Encryption Standard (AES) from an information-theoretic perspective. Injecting faults into cryptosystems is categorized as an active at tack where attackers induce an error in operations to retrieve the secret internal information, e.g., the secret key of ciphers. Here, we consider DFA attacks as equivalent to a special kind of passive attack where attackers can obtain leaked information without measurement noise. The DFA attacks are regarded as a conversion process from the leaked information to the secret key. Each fault model defines an upper bound for the amount of leaked information. The optimal DFA attacks should be able to exploit fully the leaked information in order to retrieve the secret key with a practical level of complexity. This paper discusses a new DFA methodology to achieve the optimal DFA attack by deriving the amount of the leaked information for various fault models from an information-theoretic perspective. We review several previous DFA at tacks on AES variants to check the optimality of their attacks. We also propose improved DFA attacks on AES-192 and AES-256 that reach the theoretical limits.</description><subject>Advanced encryption standard (AES)</subject><subject>Algorithm design and analysis</subject><subject>Complexity theory</subject><subject>differential fault analysis (DFA)</subject><subject>Doped fiber amplifiers</subject><subject>Encryption</subject><subject>information leakage</subject><subject>Leaking of information</subject><subject>Timing</subject><subject>Upper bound</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9UEFqwzAQFKWFpmkfUHoxvTvVypZsH0Mat4FADk3PQpIlouBYrqQc8vsqJAQWZhdmlplB6BXwDAA3H9tV-zMjGGBGoCqburxDE6CU5QwTuL_tUDyipxD2GJclsHqClqvBOH8Q0boh3-608zpalc3H0Tuhdll02WaM9iD67NMao70eok1HK459zOaD6E_Bhmf0YEQf9MsVp-i3XW4X3_l687VazNe5Kmgd81KajjKCpeqolDVjoBUTUCttqJCGatOILoEkLFntCpXyYCUINtJUVFfFFL1f_iZ3f0cdIt-7o08mAm-ANTQNSSS4kJR3IXht-OhTAH_igPm5LH4ui5_L4teykubtorFa6xuf4QowpsU_n09m0Q</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Sakiyama, K.</creator><creator>Li, Y.</creator><creator>Ohta, K.</creator><creator>Iwamoto, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>Information-Theoretic Approach to Optimal Differential Fault Analysis</title><author>Sakiyama, K. ; Li, Y. ; Ohta, K. ; Iwamoto, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-4bfd5620bcd5bb8661ec6a18cef5abf5ef9adf5eb26601d3c0110ca20fbf75e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Advanced encryption standard (AES)</topic><topic>Algorithm design and analysis</topic><topic>Complexity theory</topic><topic>differential fault analysis (DFA)</topic><topic>Doped fiber amplifiers</topic><topic>Encryption</topic><topic>information leakage</topic><topic>Leaking of information</topic><topic>Timing</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakiyama, K.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Ohta, K.</creatorcontrib><creatorcontrib>Iwamoto, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakiyama, K.</au><au>Li, Y.</au><au>Ohta, K.</au><au>Iwamoto, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-Theoretic Approach to Optimal Differential Fault Analysis</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>109</spage><epage>120</epage><pages>109-120</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>This paper presents a comprehensive analysis of differential fault analysis (DFA) attacks on the Advanced Encryption Standard (AES) from an information-theoretic perspective. Injecting faults into cryptosystems is categorized as an active at tack where attackers induce an error in operations to retrieve the secret internal information, e.g., the secret key of ciphers. Here, we consider DFA attacks as equivalent to a special kind of passive attack where attackers can obtain leaked information without measurement noise. The DFA attacks are regarded as a conversion process from the leaked information to the secret key. Each fault model defines an upper bound for the amount of leaked information. The optimal DFA attacks should be able to exploit fully the leaked information in order to retrieve the secret key with a practical level of complexity. This paper discusses a new DFA methodology to achieve the optimal DFA attack by deriving the amount of the leaked information for various fault models from an information-theoretic perspective. We review several previous DFA at tacks on AES variants to check the optimality of their attacks. We also propose improved DFA attacks on AES-192 and AES-256 that reach the theoretical limits.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2011.2174984</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2012-02, Vol.7 (1), p.109-120 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_proquest_journals_916956952 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Advanced encryption standard (AES) Algorithm design and analysis Complexity theory differential fault analysis (DFA) Doped fiber amplifiers Encryption information leakage Leaking of information Timing Upper bound |
title | Information-Theoretic Approach to Optimal Differential Fault Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-Theoretic%20Approach%20to%20Optimal%20Differential%20Fault%20Analysis&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Sakiyama,%20K.&rft.date=2012-02-01&rft.volume=7&rft.issue=1&rft.spage=109&rft.epage=120&rft.pages=109-120&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2011.2174984&rft_dat=%3Cproquest_ieee_%3E2565823111%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-4bfd5620bcd5bb8661ec6a18cef5abf5ef9adf5eb26601d3c0110ca20fbf75e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916956952&rft_id=info:pmid/&rft_ieee_id=6071005&rfr_iscdi=true |