Loading…
Product range spaces, sensitive sampling, and derandomization
We introduce the concept of a {\em sensitive $\varepsilon$-approximation} and use it to derive a more efficient algorithm for computing $\varepsilon$-nets. We define and investigate product range spaces, for which we establish sampling theorems analogous to the standard finite VC-dimensional case. T...
Saved in:
Published in: | SIAM journal on computing 1999, Vol.28 (5), p.1552-1575 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c299t-70d404c54895898ff5a76b1023b5641a29eefdc348e3ece1ec7d2a6babf21c433 |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-70d404c54895898ff5a76b1023b5641a29eefdc348e3ece1ec7d2a6babf21c433 |
container_end_page | 1575 |
container_issue | 5 |
container_start_page | 1552 |
container_title | SIAM journal on computing |
container_volume | 28 |
creator | BRÖNNIMANN, H CHAZELLE, B MATOUSEK, J |
description | We introduce the concept of a {\em sensitive $\varepsilon$-approximation} and use it to derive a more efficient algorithm for computing $\varepsilon$-nets. We define and investigate product range spaces, for which we establish sampling theorems analogous to the standard finite VC-dimensional case. This generalizes and simplifies results from previous works. Using these tools, we give a new deterministic algorithm for computing the convex hull of n points in $\mbox{\smallBbb R}^d$. The algorithm is obtained by derandomization of a randomized incremental algorithm, and its running time of O(nlog n + n{\lfloor d/2\rfloor})$ is optimal for any fixed dimension $d\geq 2$. |
doi_str_mv | 10.1137/S0097539796260321 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919112500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575972151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-70d404c54895898ff5a76b1023b5641a29eefdc348e3ece1ec7d2a6babf21c433</originalsourceid><addsrcrecordid>eNplkEtLA0EQhAdRMEZ_gLdFPLraPY-dnYMHCb4goKCel9l5hAnJ7jqzEfTXOyEBD54aur6qpouQc4RrRCZv3gCUFExJVdEKGMUDMkFQopSIeEgmW7nc6sfkJKUlAHKObEJuX2NvN2Ysou4WrkiDNi5dFcl1KYzhK2_0eliFbnFV6M4W1mXO9uvwo8fQd6fkyOtVcmf7OSUfD_fvs6dy_vL4PLubl4YqNZYSLAduBK-VqFXtvdCyahEoa0XFUVPlnLeG8doxZxw6Iy3VVatbT9FwxqbkYpc7xP5z49LYLPtN7PLJRqFCpAIgQ7iDTOxTis43QwxrHb8bhGZbUvOvpOy53AfrZPTK5-9MSH_GjHIQ7Bdl_mXr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919112500</pqid></control><display><type>article</type><title>Product range spaces, sensitive sampling, and derandomization</title><source>SIAM Journals Archive</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global</source><creator>BRÖNNIMANN, H ; CHAZELLE, B ; MATOUSEK, J</creator><creatorcontrib>BRÖNNIMANN, H ; CHAZELLE, B ; MATOUSEK, J</creatorcontrib><description>We introduce the concept of a {\em sensitive $\varepsilon$-approximation} and use it to derive a more efficient algorithm for computing $\varepsilon$-nets. We define and investigate product range spaces, for which we establish sampling theorems analogous to the standard finite VC-dimensional case. This generalizes and simplifies results from previous works. Using these tools, we give a new deterministic algorithm for computing the convex hull of n points in $\mbox{\smallBbb R}^d$. The algorithm is obtained by derandomization of a randomized incremental algorithm, and its running time of O(nlog n + n{\lfloor d/2\rfloor})$ is optimal for any fixed dimension $d\geq 2$.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/S0097539796260321</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied mathematics ; Applied sciences ; Approximation ; Computer science ; Computer science; control theory; systems ; Convex and discrete geometry ; Exact sciences and technology ; Geometry ; Grants ; Mathematics ; Scholarships & fellowships ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>SIAM journal on computing, 1999, Vol.28 (5), p.1552-1575</ispartof><rights>1999 INIST-CNRS</rights><rights>[Copyright] © 1999 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-70d404c54895898ff5a76b1023b5641a29eefdc348e3ece1ec7d2a6babf21c433</citedby><cites>FETCH-LOGICAL-c299t-70d404c54895898ff5a76b1023b5641a29eefdc348e3ece1ec7d2a6babf21c433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/919112500?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,4024,11688,27923,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1979405$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BRÖNNIMANN, H</creatorcontrib><creatorcontrib>CHAZELLE, B</creatorcontrib><creatorcontrib>MATOUSEK, J</creatorcontrib><title>Product range spaces, sensitive sampling, and derandomization</title><title>SIAM journal on computing</title><description>We introduce the concept of a {\em sensitive $\varepsilon$-approximation} and use it to derive a more efficient algorithm for computing $\varepsilon$-nets. We define and investigate product range spaces, for which we establish sampling theorems analogous to the standard finite VC-dimensional case. This generalizes and simplifies results from previous works. Using these tools, we give a new deterministic algorithm for computing the convex hull of n points in $\mbox{\smallBbb R}^d$. The algorithm is obtained by derandomization of a randomized incremental algorithm, and its running time of O(nlog n + n{\lfloor d/2\rfloor})$ is optimal for any fixed dimension $d\geq 2$.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Convex and discrete geometry</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Grants</subject><subject>Mathematics</subject><subject>Scholarships & fellowships</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkEtLA0EQhAdRMEZ_gLdFPLraPY-dnYMHCb4goKCel9l5hAnJ7jqzEfTXOyEBD54aur6qpouQc4RrRCZv3gCUFExJVdEKGMUDMkFQopSIeEgmW7nc6sfkJKUlAHKObEJuX2NvN2Ysou4WrkiDNi5dFcl1KYzhK2_0eliFbnFV6M4W1mXO9uvwo8fQd6fkyOtVcmf7OSUfD_fvs6dy_vL4PLubl4YqNZYSLAduBK-VqFXtvdCyahEoa0XFUVPlnLeG8doxZxw6Iy3VVatbT9FwxqbkYpc7xP5z49LYLPtN7PLJRqFCpAIgQ7iDTOxTis43QwxrHb8bhGZbUvOvpOy53AfrZPTK5-9MSH_GjHIQ7Bdl_mXr</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>BRÖNNIMANN, H</creator><creator>CHAZELLE, B</creator><creator>MATOUSEK, J</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>1999</creationdate><title>Product range spaces, sensitive sampling, and derandomization</title><author>BRÖNNIMANN, H ; CHAZELLE, B ; MATOUSEK, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-70d404c54895898ff5a76b1023b5641a29eefdc348e3ece1ec7d2a6babf21c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Convex and discrete geometry</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Grants</topic><topic>Mathematics</topic><topic>Scholarships & fellowships</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRÖNNIMANN, H</creatorcontrib><creatorcontrib>CHAZELLE, B</creatorcontrib><creatorcontrib>MATOUSEK, J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career & Technical Education Database</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRÖNNIMANN, H</au><au>CHAZELLE, B</au><au>MATOUSEK, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Product range spaces, sensitive sampling, and derandomization</atitle><jtitle>SIAM journal on computing</jtitle><date>1999</date><risdate>1999</risdate><volume>28</volume><issue>5</issue><spage>1552</spage><epage>1575</epage><pages>1552-1575</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We introduce the concept of a {\em sensitive $\varepsilon$-approximation} and use it to derive a more efficient algorithm for computing $\varepsilon$-nets. We define and investigate product range spaces, for which we establish sampling theorems analogous to the standard finite VC-dimensional case. This generalizes and simplifies results from previous works. Using these tools, we give a new deterministic algorithm for computing the convex hull of n points in $\mbox{\smallBbb R}^d$. The algorithm is obtained by derandomization of a randomized incremental algorithm, and its running time of O(nlog n + n{\lfloor d/2\rfloor})$ is optimal for any fixed dimension $d\geq 2$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0097539796260321</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 1999, Vol.28 (5), p.1552-1575 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_journals_919112500 |
source | SIAM Journals Archive; Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied mathematics Applied sciences Approximation Computer science Computer science control theory systems Convex and discrete geometry Exact sciences and technology Geometry Grants Mathematics Scholarships & fellowships Sciences and techniques of general use Theoretical computing |
title | Product range spaces, sensitive sampling, and derandomization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Product%20range%20spaces,%20sensitive%20sampling,%20and%20derandomization&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=BR%C3%96NNIMANN,%20H&rft.date=1999&rft.volume=28&rft.issue=5&rft.spage=1552&rft.epage=1575&rft.pages=1552-1575&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/S0097539796260321&rft_dat=%3Cproquest_cross%3E2575972151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-70d404c54895898ff5a76b1023b5641a29eefdc348e3ece1ec7d2a6babf21c433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919112500&rft_id=info:pmid/&rfr_iscdi=true |