Loading…
Waveguide miniaturization using uniaxial negative permeability metamaterial
A rectangular waveguide filled with anisotropic uniaxial metamaterial with transversal negative effective permeability is investigated both theoretically and experimentally. It is shown that such a waveguide supports propagation of the backward wave below the cutoff frequency, thus, it can be consid...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2005-01, Vol.53 (1), p.110-119 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A rectangular waveguide filled with anisotropic uniaxial metamaterial with transversal negative effective permeability is investigated both theoretically and experimentally. It is shown that such a waveguide supports propagation of the backward wave below the cutoff frequency, thus, it can be considered as a dual of the ordinary waveguide. The transversal dimension of this waveguide can be arbitrarily smaller than half of a wavelength in the filling material, provided that the transversal permeability is negative. This peculiar behavior may be used for fabrication of miniaturized rectangular waveguides. Several experimental miniaturized waveguides loaded with double ring resonators in 7 GHz frequency band have been designed, fabricated and tested. The measured results revealed backward-wave passband located below the cutoff frequency. Furthermore, it was experimentally shown that the increase of the physical length of the waveguide caused the decrease of the electrical length. This is a direct proof of the backward-wave propagation since the phase of the backward wave increases along the waveguide. |
---|---|
ISSN: | 0018-926X 1558-2221 1558-2221 |
DOI: | 10.1109/TAP.2004.840503 |