Loading…
A Homotopy-Based Algorithm for Mixed Complementarity Problems
This paper develops an algorithm for solving mixed complementarity problems that is based upon probability-one homotopy methods. After the complementarity problem is reformulated as a system of nonsmooth equations, a homotopy method is used to solve a sequence of smooth approximations to this system...
Saved in:
Published in: | SIAM journal on optimization 2002, Vol.12 (3), p.583-605 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-6602cef0471063355cf2f11da800dd73616bae0767b7bd3fba0200a42bb3c8083 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-6602cef0471063355cf2f11da800dd73616bae0767b7bd3fba0200a42bb3c8083 |
container_end_page | 605 |
container_issue | 3 |
container_start_page | 583 |
container_title | SIAM journal on optimization |
container_volume | 12 |
creator | Billups, Stephen C. |
description | This paper develops an algorithm for solving mixed complementarity problems that is based upon probability-one homotopy methods. After the complementarity problem is reformulated as a system of nonsmooth equations, a homotopy method is used to solve a sequence of smooth approximations to this system of equations. The global convergence properties of this approach are qualitatively different from those of other recent methods, which rely upon decrease of a merit function. This enables the algorithm to reliably solve certain classes of problems that prove troublesome for other methods. To improve efficiency, the homotopy algorithm is embedded in a generalized Newton method. |
doi_str_mv | 10.1137/S1052623498337431 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_920668165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582289621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-6602cef0471063355cf2f11da800dd73616bae0767b7bd3fba0200a42bb3c8083</originalsourceid><addsrcrecordid>eNplkEFLxDAQhYMouK7-AG_Fe3Um0ybpwUNd1BVWFNRzSdpEd2k3NemC_fd2WW-e5s37HjPwGLtEuEYkefOGkHPBKSsUkcwIj9gMochTiao43uucp3t-ys5i3ACAKoSasdsyWfrOD74f0zsdbZOU7acP6-GrS5wPyfP6Z_IWvutb29ntoCc0Jq_Bm2mP5-zE6Tbai785Zx8P9--LZbp6eXxalKu0JhJDKgTw2jrIJIIgyvPacYfYaAXQNJIECqMtSCGNNA05o4ED6IwbQ7UCRXN2dbjbB_-9s3GoNn4XttPLquAghEKRTyE8hOrgYwzWVX1YdzqMFUK1L6n6VxL9AiueWEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920668165</pqid></control><display><type>article</type><title>A Homotopy-Based Algorithm for Mixed Complementarity Problems</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Billups, Stephen C.</creator><creatorcontrib>Billups, Stephen C.</creatorcontrib><description>This paper develops an algorithm for solving mixed complementarity problems that is based upon probability-one homotopy methods. After the complementarity problem is reformulated as a system of nonsmooth equations, a homotopy method is used to solve a sequence of smooth approximations to this system of equations. The global convergence properties of this approach are qualitatively different from those of other recent methods, which rely upon decrease of a merit function. This enables the algorithm to reliably solve certain classes of problems that prove troublesome for other methods. To improve efficiency, the homotopy algorithm is embedded in a generalized Newton method.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/S1052623498337431</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Methods</subject><ispartof>SIAM journal on optimization, 2002, Vol.12 (3), p.583-605</ispartof><rights>[Copyright] © 2002 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-6602cef0471063355cf2f11da800dd73616bae0767b7bd3fba0200a42bb3c8083</citedby><cites>FETCH-LOGICAL-c336t-6602cef0471063355cf2f11da800dd73616bae0767b7bd3fba0200a42bb3c8083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/920668165?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,4024,11688,27923,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Billups, Stephen C.</creatorcontrib><title>A Homotopy-Based Algorithm for Mixed Complementarity Problems</title><title>SIAM journal on optimization</title><description>This paper develops an algorithm for solving mixed complementarity problems that is based upon probability-one homotopy methods. After the complementarity problem is reformulated as a system of nonsmooth equations, a homotopy method is used to solve a sequence of smooth approximations to this system of equations. The global convergence properties of this approach are qualitatively different from those of other recent methods, which rely upon decrease of a merit function. This enables the algorithm to reliably solve certain classes of problems that prove troublesome for other methods. To improve efficiency, the homotopy algorithm is embedded in a generalized Newton method.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Methods</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkEFLxDAQhYMouK7-AG_Fe3Um0ybpwUNd1BVWFNRzSdpEd2k3NemC_fd2WW-e5s37HjPwGLtEuEYkefOGkHPBKSsUkcwIj9gMochTiao43uucp3t-ys5i3ACAKoSasdsyWfrOD74f0zsdbZOU7acP6-GrS5wPyfP6Z_IWvutb29ntoCc0Jq_Bm2mP5-zE6Tbai785Zx8P9--LZbp6eXxalKu0JhJDKgTw2jrIJIIgyvPacYfYaAXQNJIECqMtSCGNNA05o4ED6IwbQ7UCRXN2dbjbB_-9s3GoNn4XttPLquAghEKRTyE8hOrgYwzWVX1YdzqMFUK1L6n6VxL9AiueWEs</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Billups, Stephen C.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2002</creationdate><title>A Homotopy-Based Algorithm for Mixed Complementarity Problems</title><author>Billups, Stephen C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-6602cef0471063355cf2f11da800dd73616bae0767b7bd3fba0200a42bb3c8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billups, Stephen C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billups, Stephen C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Homotopy-Based Algorithm for Mixed Complementarity Problems</atitle><jtitle>SIAM journal on optimization</jtitle><date>2002</date><risdate>2002</risdate><volume>12</volume><issue>3</issue><spage>583</spage><epage>605</epage><pages>583-605</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>This paper develops an algorithm for solving mixed complementarity problems that is based upon probability-one homotopy methods. After the complementarity problem is reformulated as a system of nonsmooth equations, a homotopy method is used to solve a sequence of smooth approximations to this system of equations. The global convergence properties of this approach are qualitatively different from those of other recent methods, which rely upon decrease of a merit function. This enables the algorithm to reliably solve certain classes of problems that prove troublesome for other methods. To improve efficiency, the homotopy algorithm is embedded in a generalized Newton method.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1052623498337431</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-6234 |
ispartof | SIAM journal on optimization, 2002, Vol.12 (3), p.583-605 |
issn | 1052-6234 1095-7189 |
language | eng |
recordid | cdi_proquest_journals_920668165 |
source | ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Approximation Methods |
title | A Homotopy-Based Algorithm for Mixed Complementarity Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Homotopy-Based%20Algorithm%20for%20Mixed%20Complementarity%20Problems&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Billups,%20Stephen%20C.&rft.date=2002&rft.volume=12&rft.issue=3&rft.spage=583&rft.epage=605&rft.pages=583-605&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/S1052623498337431&rft_dat=%3Cproquest_cross%3E2582289621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-6602cef0471063355cf2f11da800dd73616bae0767b7bd3fba0200a42bb3c8083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920668165&rft_id=info:pmid/&rfr_iscdi=true |